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Multi-Home Energy Coordination Scheduling
Based on Adaptive Dynamic Programming

Kang Xiong and Qinglai Wei

Abstract—Implementing cooperative scheduling of multi-home
microgrid energy and reducing the dependence on the main grid
have become the focus of microgrid energy management
research. This paper proposes a new multi-agent adaptive
dynamic programming (MAADP) method for the cooperative
control of distributed home energy. Each home is defined as a
learning agent that needs to reasonably schedule the energy
storage system to meet the respective load demand while
accomplishing cooperative scheduling among the individual
homes. In addition, an energy clearing center (ECC) is introduced
to complete the energy exchange between each microgrid to
protect the benefits of all parties. The proposed method adopts
the learning strategy of “centralized learning and decentralized
execution” to avoid the leakage of private information. The
experimental comparison with the benchmark method verifies
that the method can realize the cooperative scheduling of each
home and reduce the dependence on the main grid.

Index Terms—Multi-home scenarios, adaptive dynamic
programming (ADP), optimal home energy management, smart grid

1. INTRODUCTION

The global warming issue has strengthened people’s
environmental protection awareness, and using clean energy
to replace fossil energy has become the central theme. With
the maturity of photovoltaic (PV) and wind power generation
technologies, home customers have widely used them. With
the influx of clean energy into the main grid, the regular
operation of the main grid is greatly affected. The emergence
of the smart grid provides a solution to these problems. Smart
grids can realize the rational dispatch of energy, improve
energy utilization, and reduce energy waste. With the rise of
artificial intelligence technology, more new technologies have
been introduced into smart grids, including artificial neural
networks (ANNs) [1, 2], fuzzy logic systems [3, 4],
reinforcement learning (RL) [5, 6], and adaptive dynamic
programming (ADP) [7-9]. This paper focuses on the
problem of cooperative control of multiple home energy
sources to reduce the dependence on the main grid.

The multi-microgrid energy scheduling problem [10]
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involves the joint scheduling of multiple homes or plants,
which has a broader application than single-microgrid energy
management [11] but is relatively more complex. Multi-
microgrid energy management aims to jointly schedule energy
from each microgrid to meet the load demand and reduce the
dependence on the main grid. Existing methods of multi-
microgrid energy management can be divided into three main
categories: centralized, decentralized, and hybrid.

The centralized method (CM) [12] gives control of all
microgrids to a central controller, which collects all
information and then performs uniform training and
scheduling. In Ref. [13], a centralized multi-objective
optimization algorithm is proposed to achieve coordinated
control among multiple microgrids and a balance between
performance and cost finally. The CM can accomplish its
goals well, but there are two main problems: the “curse of
dimensionality” and privacy issues [14]. The decentralized
method (DM) [15, 16] gives the decision-making power to
each microgrid, and each microgrid performs energy
scheduling with the local information it obtains. A
decentralized distributed system is constructed using RL in
Ref. [17], and a two-layer control strategy is used to realize
the distributed control of each microgrid. In Ref. [18], a three-
layer coordinate system control framework is proposed that
can be used in grid-connected and islanded modes. The
problem with DM is that it is difficult to achieve a balance.
The emergence of hybrid method (HM) [19] alleviates the
shortcomings of the above two methods, which combines
centralized and decentralized methods in training and
deployment to Dbetter balance the advantages and
disadvantages. In Ref. [20], a multi-agent RL algorithm is
proposed for secondary voltage control, which uses a
“centralized learning and decentralized execution” learning
strategy. In Ref. [21], a multi-agent RL algorithm is used to
balance the benefits of microgrid participants, and a
negotiating agent is introduced to solve the optimal
equilibrium solution. In addition, the scalability of multi-home
energy management system (MHEMS) is discussed in Ref. [22].

The above-mentioned multi-microgrid energy management
scheme has achieved fruitful results, but some aspects can still
be improved. Firstly, most existing schemes treat renewable
energy and loads in one category and rarely consider
individual homes. Secondly, most existing solutions still use
discrete control strategies, which are less accurate than
continuous control strategies. Thirdly, most of the solutions
adopt offline learning methods, which makes it challenging to
carry out practical applications.
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This paper proposes a new multi-agent adaptive dynamic
programming (MAADP) method for distributed control of
home energy. The method introduces a “centralized learning
and decentralized execution” learning strategy [23, 24] based
on an action-dependent heuristic dynamic programming
(ADHDP) method. The MAADP method is a data-based
online learning method that learns in real-time interaction with
the microgrid system. Each home is defined as a subsystem
with learning capability. The acquired local information is
used to complete the intelligent scheduling of the energy
storage system (ESS) and achieve cooperative control of
multiple homes. In addition, the MAADP method introduces
an energy clearing center (ECC) for energy exchange between
homes and centralized training.

II. PROBLEM FORMULATION

In this section, we will introduce the multi-home energy
management system, define the constraints of the relevant
components, and present the optimized objectives.

A. Multi-Home Energy Management System

The structure of the MHEMS consists of three main
components: the main grid, the home microgrid, and the ECC.
Each home microgrid has its ESS, load, and renewable energy
PV. ECC is responsible for energy clearing between
individual homes, determining clearing prices, and completing
centralized training. The ECC performs the energy-clearing
process by purchasing energy from the main grid if there is
not enough energy in the market to meet the load demand of
all homes. Conversely, if energy exceeds demand, the excess
energy is sold to the main grid.

The operation process of the MHEMS is as follows. First, at
moment ¢, home microgrid i gets the electricity price of the
main grid Cy (), the electricity generated by PV P;Dv(t), the
load Pj(f), and the remaining capacity of the ESS E{ (1) to
generate the charging and discharging power of the ESS Pg(t)
and price of electricity for sale Ci(¢). The energy exchanged
Pé(t) can be calculated by Eq. (1), where Pé(t) > (0 means
energy to be purchased, Pi(f) <0 means energy to be sold,
and PL(f) = 0 means no energy transaction is required, and the
sale price Ci(t) is valid only when energy is sold. Then, home
microgrid i sends the energy exchange P.(f) and the price
CL(#) to the ECC for energy trading. The ECC will set the
final clearing price C.(f) according to the set rules to complete
the energy demand of each home.

PL(1) = Pi(t) - Pi(1) - Ph (1) (1)
where the superscript i denotes the i-th home microgrid.
P{)(t) > (0 means discharging, P{J(t) < 0 means charging, and
PL() =0 is idle.

The ECC needs to follow the setup rules to set the final
clearing price and the energy transactions between the
individual home microgrids and the main grid. The rules are
set as follows.

(1) Each home needs to provide an energy exchange P. as
well as a sale price C.. The sale price is only valid when the
energy is sold.

(2) The ECC needs to compare the effective selling price
offered by each home microgrid with the electricity price of
main grid and choose the smallest electricity price as the final
clearing price.

(3) If the energy remaining in the ECC will be sold to the
main grid after all load demands are met. The sale price is
0.8 times the price of electricity from the main grid. The
benefits from the sale will be distributed to the individual
customers according to the proportion of energy sold.

(4) If the ECC does not have enough energy, energy will be
purchased from the main grid, and the cost will be shared in
proportion to the home demand.

B. Component and Constraint

We use the standard battery model as ESS, and the battery
model can be represented as Eq. (2).

E{(t+1) = EL(t) - PL(t) xm:(PL (1))

where 7;(-) denotes the conversion efficiency of the battery.
The efficiency of the battery is derived in Ref. [25] as

1ni(Py(1) = 0.898 —0.173| Py (1)|/ Prye 3)
where Pl . >0 is the rated power of the battery. The battery
needs to satisfy certain constraints, which can be expressed as
follows

2

i i i
Pb,min < Pb(t) < Pb,max’ (4)
i i i
Eb,min < Eb(t) < Eb,max
i i ’ :
where Py . and Py denote the battery’s maximum

charging power and maximum discharging power,
respectively. £y . and Ej . denote the battery’s minimum
capacity and maximum capacity, respectively.

The power generated by PV is related to the parameters of
PV panels, area, real-time temperature, and solar radiation,
and its maximum power generation is P;',V’max. The maximum
load demand for each home at each moment is P{’max. PV and
load are provided with data. In addition, the selling price of
home microgrid energy cannot exceed C! ... The electricity
price of the main grid cannot exceed Cpy max. This paper uses
data at 1 h intervals to validate and test the method.

C. Optimization Objective

The optimization objective is crucial to the training of the
entire model. Each home microgrid has its decision-making
system and optimization objective in the MHEMS. The
optimization objective U; of the home microgrid i is as

follows
= (C ()Y . cl oY
Ui = E ’)/lt (ﬂlll (—]‘\:]Ol.St ] +l7112[—]\;n ) +

cost batt

i 2
mi [Céell(t)] ]
3 Ni
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where C!_, is the cost of purchasing or selling energy, C{)au i
the penalty for the remaining capacity of the ESS, and C ; o1 18
the penalty for selling price, respectively. Since the above
three parts have different attributes, they must be divided by a
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ngatt : )
the three parts, respectively. m), m,, and m; are the
proportions of the three parts, respectively. y; is the discount
factor of the home microgrid. Cl,, Ci . and C! are

cost? batt?
calculated as follows

weight to combine. N!

osts , and N;eu are the weights of

Cl (1) = Cost' (1) (6)
(D) = Ey(0) = PLOMIPL0) = (B} 110 /2) )
Cly(=Ci) ®)

where Cost'(f) is the cost or revenue given by the ECC at ¢
mpment. The three weights are P{,maX-Cm,max, Ei),max /2, and
Cs max» respectively. The overall objective U, of the microgrid

system can be expressed as follows

minU,=U1+Uz+---+ Uy (9)
where H is the number of homes. The MAADP method aims
to achieve cooperative control among home microgrids and
reduce the dependence on the main grid while safeguarding
the benefits of all parties.

1II. MAADP METHOD

In this section, we will first briefly introduce the ADHDP
algorithm, then describe the whole structure of the MAADP
method based on it, and finally, present the implementation
details of the method.

A. Structure of MAADP

ADHDP is one of the most commonly used ADP
algorithms. Werbos first proposed ADP, an intelligent
optimization method with self-learning and adaptive
functions, integrating optimal control, RL, and ANN. The
ADHDP algorithm is an actor-critic method, with the actor
being the policy network and the critic being the value
network. The algorithm evaluates the policy a generated by
the actor through the value g generated by the critic, and
finally obtains the optimal policy by an iterative method. At
moment ¢, the critic network is updated by minimizing the
error d;, and the actor network is updated by minimizing value
q: by adjusting the policy a;. The error 9, is solved as follows

0r = qr — (re+¥qre1) (10)
where 7, denotes the return at moment ¢ and y denotes the
discount factor.

In the MHEMS, each home microgrid has an actor-critic
network to have learning capabilities. In order to balance the
benefits among home microgrids, the MAADP method
introduces the learning strategy of “centralized learning and
decentralized execution”. Specifically, the MAADP method
stores the actor network in each home microgrid, while all the
critic networks are encapsulated in the ECC for centralized
learning. ECC is only responsible for clearing energy and
centralized training of the critic network of home microgrids.

The learning process of the MAADP method is as follows.
First, at moment ¢, home microgrid i generates policy a' and
executes them based on the acquired state oi. Then, the user

sends the required energy exchange and selling price to the
ECC for trading, which returns the user’s cost and revenue,
and the user calculates his return 7/ based on the returned cost.
In the next step, the home microgrid i sends the state o, the
policy a!, and the return 7/ together to the ECC. Finally, all
the critic networks in the ECC will use the uploaded
information for learning. The respective critic networks of the
home microgrid will feed a value ¢! for learning the actor
network. The overall network structure of MAADP is shown
in Fig. 1.

Energy clearing center

Critic' Critic? Critic”
q;| |anolrt g ai, of, r} q| |alof,rf
[ Actor! ] { Actor? J [ Actor”’ ]
al fohn a| |onr a| o
[ Multi-home microgrid environment ]

Figure 1 Network structure of MAADP.

The MAADP method is a data-based online learning
method that learns from real-time interactions with multi-
home microgrid systems. We add a rule system (RS) to the
home microgrid to ensure that the actions generated by the
actor network are feasible. We will introduce the rule system
and the learning details in the rest of this section.

B. Rule System

Setting up the RS prevents each actor network from
generating infeasible actions during the initial training phase.
In the learning phase, after actor network of each home
microgrid generates actions, the actor networks are processed
by RS to replace the infeasible actions and guarantee the
normal operation of the whole microgrid system. As learning
proceeds, the probability of generating infeasible actions
decreases, and the role of RS diminishes. The function of the
RS in a home microgrid is primarily to ensure that the inputs
and outputs of the ESS meet its capacity settings. All actor
networks are built with outputs that meet the action limits, so
there is no need for additional settings in the RS.

C. State and Action

The state 0! and the policy @ of the home microgrid i at
moment ¢ can be expressed as

o} = {PL.(0), Pi(t), EL (), Cm(0)}
al = {Pi (1), Ci(0))

All the critic networks are encapsulated in ECC, and they all
have the same input state, including the states and policies of
all home microgrids, and they output respective values g:. The
input state and output actions of the critic network at moment

critic’ critic!
t, represented by o7 and a;

(11)

, can be expressed as
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critic _ [ 1 2 H 1 2 H
oyMe = {o,,ot,...,ot ,a,,ay,...,d; },

a?ritici — {q;}

The states and actions need to be pre-processed before they

are fed into the neural network. All the state information

needs to be mapped to the range [—1, 1], and the actions need

to be mapped to the range [0, 1] to facilitate the processing by
the neural network.

(12)

D. Network Structure and Network Update

Actor network of home microgrid uses a 4-10-2 network
structure. Specifically, four-dimensional data input is
processed by a hidden layer containing ten neurons, and two
actions are output. A tanh activation function is used in the
middle of the neural network structure. The first action is the
charging and discharging power of the ESS, which is mapped
to [-1,1] using the tanh activation function and then
multiplied by P{ . to map the output to [-P, P 1.
The second action is the selling price, which is mapped to
[0,1] using a sigmoid function and then multiplied by Cé’max
to map the output to [0, Cé’max]. All critic networks have the
same structure, and the inputs are the states and actions of all
home microgrids, which are processed by a hidden layer with
64 neurons to output values.

To alleviate the bootstrapping problem, we introduce two
target networks actor_target and critic_target. The parameters
of the two target networks are 6, and w;, respectively. The
purpose of the target network has two main roles: Firstly,
using the state of the next moment, actor target predicts the
action; secondly, based on the state and action of the next
moment, critic_target predicts the value. The target network
does not need to be trained and is updated using Formula (13).
7; is the control weight of the old and new parameters, which
is uniformly set to 0.8 in this paper.

w, —Tiowi+(1—1)-wr,

{ 91._[(—‘1',"9,'+(1—Tl‘)‘9i_l (13)

To achieve better cooperative control of individual home

microgrids, the overall return U.(?) solved by Eq. (9) is used
as ri to update the actor and critic networks.

IV. COMPUTER SIMULATION
The MAADP method is validated, tested, and compared
with the DM in this section. We use two home microgrids and
one month of real data to validate our method. To simplify the
experiment, we ignore the charging/discharging efficiency of
the battery, but this does not affect the accuracy of the
experiment. All experiments are run in a Python environment.

A. Comparison Method

We compare the MAADP method with the DM. In the DM,
each home microgrid has its policy network and is trained
individually. The DM uses the same network model as the
MAADP method, except that the critic network is stored in
each microgrid, and the other settings are the same as the
MAADP method.

In our experiments, we analyze the scheduling strategies of
the two methods, comparing the cost of home electricity
consumption and the dependence on the main grid for both

methods. In addition, we add a restriction on the selling price
to the utility function to see the impact of the selling price on
the cooperative schedule.

B. Experimental Data and Setup

The real data of a German city residence in November 2015
are extracted from the open source platform “Open Power
System Data” (https://open-power-system-data.org). We use
data from two residences as our experimental data. Due to the
need for more data on real-time electricity prices, we use the
electricity prices of one day of this month as the periodic
electricity prices. The first 28 days of data are used for
training, and the last two days are used for testing.

The two home microgrids are set up as Table 1. The
maximum charge/discharge powers of ESS are the same, and
the minimum loads are set to 0. During the experiments, the
initial capacity of all ESSs is half of the maximum capacity.
The discount factor is 0.998, and the learning rate of all
networks is 0.002.

Table 1 Experimental setup of home.

i E{J,max Eé,min Cm,max Cg,max P{)v,max Pi,max P{J.max
1 60 10 10 10 5 3 5
2 40 10 10 10 6 3 5

C. Experimental Comparison of Scenario One

In scenario one, we do not add a restriction on the selling
price to the utility function to compare the strategies of the
two methods.

Setup: The utility functions for the two home microgrids
have the same parameters m! = 0.70, m) =0.30, and m} =
0.00. We use the first 28 days of data as training, with a total
of 672 sets. The two comparison methods are trained for
50,000 iterations using 672 sets, and the last two days of data
are used as a test.

Result: The test results of the MAADP method are shown
in Fig. 2. Under the condition that there is no restriction on the
selling price in the utility function, both homes set a selling
price of around 5, as shown by the red polyline. At around the
sixth moment, as shown by the blue bar, the load of home one
requires more energy, while the load of home two requires
less energy. In such a case, as shown by the dark blue polyline
graph, home two sells a large amount of energy to the ECC,
which is supplied to home one through the ECC, and the same
happens at around moment 30. Home one similarly sells a
small amount of energy to provide to home two at around
moments 0 and 48. When the energy generated by the PV is
higher, both homes choose to recharge their ESSs to maintain
the remaining capacity at an intermediate level.

The test results of DM are shown in Fig. 3, and the selling
prices of both homes are similar to those of the MAADP
method. The black bar graphs indicate the charging and
discharging of the ESS, from which it can be seen that the DM
greatly reduces the use of the ESS in order to maintain the
capacity of the ESS at an intermediate level. When PV


https://open-power-system-data.org
https://open-power-system-data.org
https://open-power-system-data.org
https://open-power-system-data.org
https://open-power-system-data.org
https://open-power-system-data.org
https://open-power-system-data.org

34

THE INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 29, NO. 1, MARCH 2024

10 * C, (cent/kW) o P, (kW) = C, (cent/kW) PV (kW) . = [ oad (kW) == P (kW)
- e, . " ~—— . °
. )
St R e T « s v ¥ e e T e N S L e | P
g
ol |.I.||!|||i||_I:I:Igu,.,.lluu:lfnll.I|I||.|‘:!.||l|.|.|llI.;.:i-.r,lu.ltl..:u.!.h!.!:
) O e |
2
S10
sl rreres P — D -~ A, - .:x.,,a:...:... g
5
wnetLL L TR T 1 O R N B dadaanhpald s
ok n.-..g.....|....!.,I'.:..I.|l.l. III_IIIlI-I.I.'ul.’u.l'lll:ngll I.Ill.l.lll.llllll T
0 12 24 36 48
Time (h)
Figure 2 Test result of MAADP in scenario one.
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Figure 3 Test result of DM in scenario one.

generates more energy, both homes do not choose to charge
the ESS but sell it to the ECC. At other times, both homes
purchase energy from the ECC to meet the load demand.

In scenario one, both methods give similar selling prices but
different strategies. Two homes in the MAADP method
cooperate closely, and when one has a higher load demand,
the other will sell its energy to reduce its dependence on the
main grid. The test results of both methods are shown in
Table 2. Evaluation metrics include two home costs, Cost! and
Cost?, average battery remaining capacity (ABRC), and
energy purchased from the main grid. The DM is relatively
poor in all comparison parts except for the average capacity of
ESS, which is superior. The MAADP method has lower

electricity costs for both homes and purchases less energy
from the main grid.

D. Experimental Comparison of Scenario Two

In this section, we add a restriction on the selling price of
the utility function. Specifically, we let the selling price be
close to the price of the main grid to compare whether the
strategies of the two methods change.

Setup: The parameters of the two home microgrid utility
functions are m’1 =0.70, m‘2 =0.30, and m’3 =0.01. Other
settings are the same as those in scenario one.

Result: Due to the restrictions of the utility function, the
selling prices of both homes are similar to the price of
electricity from the main grid. Although the selling price is

Table 2 Comparison result in scenario one.

Algorithm Cost! (cent) Cost? (cent) ABRC (kWh) ABRC (kWh) Purchased energy (kW)
DM 239.68 143.82 30.05 20.06 65.80
MAADP 99.11 53.12 15.96 11.70 28.17
Table 3 Comparison result in scenario two.
Algorithm Cost! (cent) Cost? (cent) ABRC (kWh) ABRC (kWh) Purchased energy (kW)
DM 231.66 146.18 29.36 20.23 64.91
MAADP 127.16 28.49 16.13 11.62 28.81
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changed, the strategies of the two home microgrids are the
same as those in scenario one. The results of the comparison
between the two methods are shown in Table 3. In the
MAADP method, the cost of home one increases, while that
of home two decreases. Because of the higher selling price,
home two can earn more benefits. Home load in DM relies
mainly on energy purchased from the main grid.

E. Experiment Summary

Our proposed MAADP method can accomplish the
cooperative scheduling of multi-home energy in two
experimental scenarios. Home one has more load demand, so
home two will provide part of the energy to home one,
reducing the dependence on main grid. When the sold price
changes, the strategy remains unchanged. DM reduces the use
of ESS in order to guarantee that the remaining capacity of
ESS is maintained at the middle level, and its load demand
mainly relies on the main grid. The experimental results show
that MAADP can accomplish the cooperative scheduling of
multi-home energy well and reduce the overall expense and
reliance on the main grid.

V. CONCLUSION

This work describes and evaluates an MAADP energy
management method for multi-home cooperative scheduling
scenarios. The method introduces a learning strategy of
“centralized learning and decentralized execution” based on
the ADHDP method. The MAADP method reduces the cost of
the entire microgrid and its dependence on the main grid by
achieving cooperative scheduling of individual homes. In
addition, we introduce an energy clearing center that can
perform energy exchange between microgrids and centralized
training of the value network of each home. Finally, the
effectiveness and performance of our method are verified
through comparative experiments. The shortcoming of the
proposed method is that as the number of home microgrids
increases, it increases the input state dimension of the value
network, and the model training requires a more significant
computational effort. In future work, we will consider more
comprehensive microgrid models and address the problems of
existing schemes.
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