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   Abstract—Implementing cooperative scheduling of  multi-home
microgrid energy and reducing the dependence on the main grid
have  become  the  focus  of  microgrid  energy  management
research.  This  paper  proposes  a  new  multi-agent  adaptive
dynamic  programming  (MAADP)  method  for  the  cooperative
control  of  distributed  home  energy.  Each  home  is  defined  as  a
learning  agent  that  needs  to  reasonably  schedule  the  energy
storage  system  to  meet  the  respective  load  demand  while
accomplishing  cooperative  scheduling  among  the  individual
homes. In addition, an energy clearing center (ECC) is introduced
to  complete  the  energy  exchange  between  each  microgrid  to
protect  the  benefits  of  all  parties.  The  proposed  method  adopts
the  learning  strategy  of “centralized  learning  and  decentralized
execution” to  avoid  the  leakage  of  private  information.  The
experimental  comparison  with  the  benchmark  method  verifies
that  the  method  can  realize  the  cooperative  scheduling  of  each
home and reduce the dependence on the main grid.
    Index Terms—Multi-home  scenarios, adaptive  dynamic
programming (ADP), optimal home energy management, smart grid
  

I.  Introduction

The  global  warming  issue  has  strengthened  people’s
environmental  protection  awareness,  and  using  clean  energy
to  replace  fossil  energy  has  become  the  central  theme.  With
the maturity of photovoltaic (PV) and wind power generation
technologies,  home  customers  have  widely  used  them.  With
the  influx  of  clean  energy  into  the  main  grid,  the  regular
operation of the main grid is greatly affected. The emergence
of the smart grid provides a solution to these problems. Smart
grids  can  realize  the  rational  dispatch  of  energy,  improve
energy  utilization,  and  reduce  energy  waste.  With  the  rise  of
artificial intelligence technology, more new technologies have
been  introduced  into  smart  grids,  including  artificial  neural
networks  (ANNs) [1, 2],  fuzzy  logic  systems [3, 4],
reinforcement  learning  (RL) [5, 6],  and  adaptive  dynamic
programming  (ADP) [7−9].  This  paper  focuses  on  the
problem  of  cooperative  control  of  multiple  home  energy
sources to reduce the dependence on the main grid.

The  multi-microgrid  energy  scheduling  problem [10]

involves  the  joint  scheduling  of  multiple  homes  or  plants,
which has a broader application than single-microgrid energy
management [11] but  is  relatively  more  complex.  Multi-
microgrid energy management aims to jointly schedule energy
from each microgrid to meet the load demand and reduce the
dependence  on  the  main  grid.  Existing  methods  of  multi-
microgrid energy management can be divided into three main
categories: centralized, decentralized, and hybrid.

The  centralized  method  (CM) [12] gives  control  of  all
microgrids  to  a  central  controller,  which  collects  all
information  and  then  performs  uniform  training  and
scheduling.  In  Ref. [13],  a  centralized  multi-objective
optimization  algorithm  is  proposed  to  achieve  coordinated
control  among  multiple  microgrids  and  a  balance  between
performance  and  cost  finally.  The  CM  can  accomplish  its
goals  well,  but  there  are  two  main  problems:  the “curse  of
dimensionality” and  privacy  issues [14].  The  decentralized
method  (DM) [15, 16] gives  the  decision-making  power  to
each  microgrid,  and  each  microgrid  performs  energy
scheduling  with  the  local  information  it  obtains.  A
decentralized  distributed  system  is  constructed  using  RL  in
Ref. [17],  and  a  two-layer  control  strategy  is  used  to  realize
the distributed control of each microgrid. In Ref. [18], a three-
layer  coordinate  system  control  framework  is  proposed  that
can  be  used  in  grid-connected  and  islanded  modes.  The
problem  with  DM  is  that  it  is  difficult  to  achieve  a  balance.
The  emergence  of  hybrid  method  (HM) [19] alleviates  the
shortcomings  of  the  above  two  methods,  which  combines
centralized  and  decentralized  methods  in  training  and
deployment  to  better  balance  the  advantages  and
disadvantages.  In  Ref. [20],  a  multi-agent  RL  algorithm  is
proposed  for  secondary  voltage  control,  which  uses  a
“centralized  learning  and  decentralized  execution” learning
strategy.  In  Ref. [21],  a  multi-agent  RL  algorithm  is  used  to
balance  the  benefits  of  microgrid  participants,  and  a
negotiating  agent  is  introduced  to  solve  the  optimal
equilibrium solution. In addition, the scalability of multi-home
energy management system (MHEMS) is discussed in Ref. [22].

The  above-mentioned  multi-microgrid  energy  management
scheme has achieved fruitful results, but some aspects can still
be  improved.  Firstly,  most  existing  schemes  treat  renewable
energy  and  loads  in  one  category  and  rarely  consider
individual  homes.  Secondly,  most  existing  solutions  still  use
discrete  control  strategies,  which  are  less  accurate  than
continuous  control  strategies.  Thirdly,  most  of  the  solutions
adopt offline learning methods, which makes it challenging to
carry out practical applications.
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This  paper  proposes  a  new  multi-agent  adaptive  dynamic
programming  (MAADP)  method  for  distributed  control  of
home  energy.  The  method  introduces  a “centralized  learning
and decentralized execution” learning strategy [23, 24] based
on  an  action-dependent  heuristic  dynamic  programming
(ADHDP)  method.  The  MAADP  method  is  a  data-based
online learning method that learns in real-time interaction with
the  microgrid  system.  Each  home  is  defined  as  a  subsystem
with  learning  capability.  The  acquired  local  information  is
used  to  complete  the  intelligent  scheduling  of  the  energy
storage  system  (ESS)  and  achieve  cooperative  control  of
multiple  homes.  In  addition,  the  MAADP method  introduces
an energy clearing center (ECC) for energy exchange between
homes and centralized training.  

II.  Problem Formulation

In  this  section,  we  will  introduce  the  multi-home  energy
management  system,  define  the  constraints  of  the  relevant
components, and present the optimized objectives.  

A.  Multi-Home Energy Management System
The  structure  of  the  MHEMS  consists  of  three  main

components: the main grid, the home microgrid, and the ECC.
Each home microgrid has its ESS, load, and renewable energy
PV.  ECC  is  responsible  for  energy  clearing  between
individual homes, determining clearing prices, and completing
centralized  training.  The  ECC  performs  the  energy-clearing
process  by  purchasing  energy  from  the  main  grid  if  there  is
not enough energy in the market to meet the load demand of
all  homes. Conversely,  if  energy exceeds demand, the excess
energy is sold to the main grid.
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The operation process of the MHEMS is as follows. First, at
moment t,  home  microgrid i gets  the  electricity  price  of  the
main  grid ,  the  electricity  generated  by  PV ,  the
load ,  and  the  remaining  capacity  of  the  ESS  to
generate the charging and discharging power of the ESS 
and  price  of  electricity  for  sale .  The  energy  exchanged

 can  be  calculated  by  Eq.  (1),  where  means
energy  to  be  purchased,  means  energy  to  be  sold,
and  means no energy transaction is required, and the
sale price  is valid only when energy is sold. Then, home
microgrid i sends  the  energy  exchange  and  the  price

 to  the  ECC  for  energy  trading.  The  ECC  will  set  the
final clearing price  according to the set rules to complete
the energy demand of each home.
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where  the  superscript  denotes  the -th  home  microgrid.
 means  discharging,  means  charging,  and
 is idle.

The  ECC  needs  to  follow  the  setup  rules  to  set  the  final
clearing  price  and  the  energy  transactions  between  the
individual  home microgrids  and  the  main  grid.  The  rules  are
set as follows.

Pi
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(1) Each home needs to provide an energy exchange  as
well as a sale price . The sale price is only valid when the
energy is sold.

(2)  The  ECC  needs  to  compare  the  effective  selling  price
offered  by  each  home  microgrid  with  the  electricity  price  of
main grid and choose the smallest electricity price as the final
clearing price.

(3)  If  the  energy  remaining  in  the  ECC will  be  sold  to  the
main  grid  after  all  load  demands  are  met.  The  sale  price  is
0.8  times  the  price  of  electricity  from  the  main  grid.  The
benefits  from  the  sale  will  be  distributed  to  the  individual
customers according to the proportion of energy sold.

(4) If the ECC does not have enough energy, energy will be
purchased from the main grid,  and the  cost  will  be  shared in
proportion to the home demand.  

B.  Component and Constraint
We use the standard battery model as ESS, and the battery

model can be represented as Eq. (2).
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ηi(·)where  denotes the conversion efficiency of the battery.

The efficiency of the battery is derived in Ref. [25] as
 

ηi(Pi
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b(t)|/Pi
rate (3)

Pi
rate > 0where  is  the rated power of the battery.  The battery

needs to satisfy certain constraints, which can be expressed as
follows
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where  and  denote  the  battery’s  maximum
charging  power  and  maximum  discharging  power,
respectively.  and  denote the battery’s minimum
capacity and maximum capacity, respectively.
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The power generated by PV is  related to the parameters of
PV  panels,  area,  real-time  temperature,  and  solar  radiation,
and its maximum power generation is . The maximum
load demand for each home at each moment is . PV and
load  are  provided  with  data.  In  addition,  the  selling  price  of
home microgrid energy cannot  exceed .  The electricity
price of the main grid cannot exceed . This paper uses
data at 1 h intervals to validate and test the method.  

C.  Optimization Objective

Ui

The  optimization  objective  is  crucial  to  the  training  of  the
entire  model.  Each  home  microgrid  has  its  decision-making
system  and  optimization  objective  in  the  MHEMS.  The
optimization  objective  of  the  home  microgrid i is  as
follows
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where  is the cost of purchasing or selling energy,  is
the penalty for the remaining capacity of the ESS, and  is
the  penalty  for  selling  price,  respectively.  Since  the  above
three parts have different attributes, they must be divided by a
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weight  to  combine.  and  are  the  weights  of
the  three  parts,  respectively. , ,  and  are  the
proportions of the three parts,  respectively.  is the discount
factor  of  the  home  microgrid. , ,  and  are
calculated as follows
 

Ci
cost(t) = Costi(t) (6)

 

Ci
batt(t) = Ei

b(t)−Pi
b(t)ηi(Pi

b(t))− (Ei
b,max/2) (7)

 

Ci
sell(t) =Ci

s(t) (8)
Costi(t) t

Pi
l,max ·Cm,max Ei

b,max/2
Ci

s,max Uc

where  is  the  cost  or  revenue  given  by  the  ECC  at 
moment.  The three  weights  are , ,  and

, respectively. The overall objective  of the microgrid
system can be expressed as follows
 

minUc = U1+U2+ · · ·+UH (9)
Hwhere  is the number of homes. The MAADP method aims

to  achieve  cooperative  control  among  home  microgrids  and
reduce  the  dependence  on  the  main  grid  while  safeguarding
the benefits of all parties.  

III.  Maadp Method

In  this  section,  we  will  first  briefly  introduce  the  ADHDP
algorithm,  then  describe  the  whole  structure  of  the  MAADP
method  based  on  it,  and  finally,  present  the  implementation
details of the method.  

A.  Structure of MAADP

a
q

δt
qt at δt

ADHDP  is  one  of  the  most  commonly  used  ADP
algorithms.  Werbos  first  proposed  ADP,  an  intelligent
optimization  method  with  self-learning  and  adaptive
functions,  integrating  optimal  control,  RL,  and  ANN.  The
ADHDP  algorithm  is  an  actor-critic  method,  with  the  actor
being  the  policy  network  and  the  critic  being  the  value
network.  The  algorithm  evaluates  the  policy  generated  by
the  actor  through  the  value  generated  by  the  critic,  and
finally  obtains  the  optimal  policy  by  an  iterative  method.  At
moment t,  the  critic  network  is  updated  by  minimizing  the
error , and the actor network is updated by minimizing value

 by adjusting the policy . The error  is solved as follows
 

δt = qt − (rt +γqt+1) (10)
γwhere rt denotes  the  return  at  moment t and  denotes  the

discount factor.
In  the  MHEMS,  each  home  microgrid  has  an  actor-critic

network to have learning capabilities.  In order to balance the
benefits  among  home  microgrids,  the  MAADP  method
introduces  the  learning  strategy  of “centralized  learning  and
decentralized  execution”.  Specifically,  the  MAADP  method
stores the actor network in each home microgrid, while all the
critic  networks  are  encapsulated  in  the  ECC  for  centralized
learning.  ECC  is  only  responsible  for  clearing  energy  and
centralized training of the critic network of home microgrids.

ai
t
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The learning process of the MAADP method is as follows.
First,  at  moment t,  home microgrid i generates  policy  and
executes  them based  on  the  acquired  state .  Then,  the  user

ri
t

oi
t

ai
t ri

t

qi
t

sends  the  required  energy  exchange  and  selling  price  to  the
ECC  for  trading,  which  returns  the  user’s  cost  and  revenue,
and the user calculates his return  based on the returned cost.
In  the next  step,  the  home microgrid i sends the state ,  the
policy ,  and  the  return  together  to  the  ECC.  Finally,  all
the  critic  networks  in  the  ECC  will  use  the  uploaded
information for learning. The respective critic networks of the
home  microgrid  will  feed  a  value  for  learning  the  actor
network.  The overall  network structure of  MAADP is  shown
in Fig. 1.
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Figure 1 Network structure of MAADP.
 

The  MAADP  method  is  a  data-based  online  learning
method  that  learns  from  real-time  interactions  with  multi-
home  microgrid  systems.  We  add  a  rule  system  (RS)  to  the
home  microgrid  to  ensure  that  the  actions  generated  by  the
actor network are feasible. We will introduce the rule system
and the learning details in the rest of this section.  

B.  Rule System
Setting  up  the  RS  prevents  each  actor  network  from

generating infeasible actions during the initial  training phase.
In  the  learning  phase,  after  actor  network  of  each  home
microgrid generates actions, the actor networks are processed
by  RS  to  replace  the  infeasible  actions  and  guarantee  the
normal operation of the whole microgrid system. As learning
proceeds,  the  probability  of  generating  infeasible  actions
decreases, and the role of RS diminishes. The function of the
RS in a home microgrid is primarily to ensure that the inputs
and  outputs  of  the  ESS  meet  its  capacity  settings.  All  actor
networks are built with outputs that meet the action limits, so
there is no need for additional settings in the RS.  

C.  State and Action
oi

t ai
tThe  state  and  the  policy  of  the  home  microgrid i at

moment t can be expressed as
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All the critic networks are encapsulated in ECC, and they all
have the same input state, including the states and policies of
all home microgrids, and they output respective values . The
input state and output actions of the critic network at moment
t, represented by  and , can be expressed as
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The states and actions need to be pre-processed before they
are  fed  into  the  neural  network.  All  the  state  information
needs to be mapped to the range , and the actions need
to be mapped to the range  to facilitate the processing by
the neural network.  

D.  Network Structure and Network Update
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b,max [−Pi
b,max,P

i
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[0,1] Ci
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[0, Ci
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Actor  network  of  home  microgrid  uses  a  4-10-2  network
structure.  Specifically,  four-dimensional  data  input  is
processed by a  hidden layer  containing ten  neurons,  and two
actions  are  output.  A  tanh  activation  function  is  used  in  the
middle of the neural network structure. The first action is the
charging and discharging power of the ESS, which is mapped
to  using  the  tanh  activation  function  and  then
multiplied  by  to  map  the  output  to .
The  second  action  is  the  selling  price,  which  is  mapped  to

 using a sigmoid function and then multiplied by 
to map the output to .  All  critic networks have the
same structure, and the inputs are the states and actions of all
home microgrids, which are processed by a hidden layer with
64 neurons to output values.

θ−i w−i

τi

To  alleviate  the  bootstrapping  problem,  we  introduce  two
target networks actor_target and critic_target. The parameters
of  the  two  target  networks  are  and ,  respectively.  The
purpose  of  the  target  network  has  two  main  roles:  Firstly,
using  the  state  of  the  next  moment,  actor_target  predicts  the
action;  secondly,  based  on  the  state  and  action  of  the  next
moment,  critic_target  predicts  the  value.  The  target  network
does not need to be trained and is updated using Formula (13).

 is the control weight of the old and new parameters, which
is uniformly set to 0.8 in this paper.
 {

w−i ← τi ·wi+ (1−τi) ·w−i ,
θ−i ← τi · θi+ (1−τi) · θ−i

(13)

Uc(t)
ri

t

To  achieve  better  cooperative  control  of  individual  home
microgrids, the overall return  solved by Eq. (9) is used
as  to update the actor and critic networks.
  

IV.  Computer Simulation

The  MAADP  method  is  validated,  tested,  and  compared
with the DM in this section. We use two home microgrids and
one month of real data to validate our method. To simplify the
experiment,  we  ignore  the  charging/discharging  efficiency  of
the  battery,  but  this  does  not  affect  the  accuracy  of  the
experiment. All experiments are run in a Python environment.  

A.  Comparison Method
We compare the MAADP method with the DM. In the DM,

each  home  microgrid  has  its  policy  network  and  is  trained
individually.  The  DM  uses  the  same  network  model  as  the
MAADP  method,  except  that  the  critic  network  is  stored  in
each  microgrid,  and  the  other  settings  are  the  same  as  the
MAADP method.

In our experiments, we analyze the scheduling strategies of
the  two  methods,  comparing  the  cost  of  home  electricity
consumption  and  the  dependence  on  the  main  grid  for  both

methods. In addition, we add a restriction on the selling price
to the utility function to see the impact of the selling price on
the cooperative schedule.  

B.  Experimental Data and Setup
The real data of a German city residence in November 2015

are  extracted  from  the  open  source  platform “Open  Power
System  Data” (https://open-power-system-data.org).  We  use
data from two residences as our experimental data. Due to the
need for more data on real-time electricity prices,  we use the
electricity  prices  of  one  day  of  this  month  as  the  periodic
electricity  prices.  The  first  28  days  of  data  are  used  for
training, and the last two days are used for testing.

The  two  home  microgrids  are  set  up  as Table  1.  The
maximum charge/discharge powers of ESS are the same, and
the  minimum loads  are  set  to  0.  During  the  experiments,  the
initial  capacity  of  all  ESSs  is  half  of  the  maximum capacity.
The  discount  factor  is  0.998,  and  the  learning  rate  of  all
networks is 0.002.
 
 

Table 1 Experimental setup of home.
i Ei

b,max Ei
b,min Cm,max Ci

s,max Pi
pv,max Pi

l,max Pi
b,max

1 60 10 10 10 5 3 5

2 40 10 10 10 6 3 5

   

C.  Experimental Comparison of Scenario One
In  scenario  one,  we  do  not  add  a  restriction  on  the  selling

price  to  the  utility  function  to  compare  the  strategies  of  the
two methods.

mi
1 = 0.70 mi

2 = 0.30 mi
3 =

0.00

Setup: The  utility  functions  for  the  two  home  microgrids
have  the  same  parameters , ,  and 

. We use the first 28 days of data as training, with a total
of  672  sets.  The  two  comparison  methods  are  trained  for
50,000 iterations using 672 sets, and the last two days of data
are used as a test.

Result: The test  results  of  the  MAADP method are  shown
in Fig. 2. Under the condition that there is no restriction on the
selling  price  in  the  utility  function,  both  homes  set  a  selling
price of around 5, as shown by the red polyline. At around the
sixth moment, as shown by the blue bar, the load of home one
requires  more  energy,  while  the  load  of  home  two  requires
less energy. In such a case, as shown by the dark blue polyline
graph,  home two sells  a  large  amount  of  energy to  the  ECC,
which is supplied to home one through the ECC, and the same
happens  at  around  moment  30.  Home  one  similarly  sells  a
small  amount  of  energy  to  provide  to  home  two  at  around
moments  0  and 48.  When the  energy generated by the  PV is
higher, both homes choose to recharge their ESSs to maintain
the remaining capacity at an intermediate level.

The test results of DM are shown in Fig. 3, and the selling
prices  of  both  homes  are  similar  to  those  of  the  MAADP
method.  The  black  bar  graphs  indicate  the  charging  and
discharging of the ESS, from which it can be seen that the DM
greatly  reduces  the  use  of  the  ESS  in  order  to  maintain  the
capacity  of  the  ESS  at  an  intermediate  level.  When  PV
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generates  more  energy,  both  homes  do  not  choose  to  charge
the  ESS  but  sell  it  to  the  ECC.  At  other  times,  both  homes
purchase energy from the ECC to meet the load demand.

In scenario one, both methods give similar selling prices but
different  strategies.  Two  homes  in  the  MAADP  method
cooperate  closely,  and  when  one  has  a  higher  load  demand,
the  other  will  sell  its  energy to  reduce  its  dependence on the
main  grid.  The  test  results  of  both  methods  are  shown  in
Table 2. Evaluation metrics include two home costs, Cost1 and
Cost2,  average  battery  remaining  capacity  (ABRC),  and
energy  purchased  from  the  main  grid.  The  DM  is  relatively
poor in all comparison parts except for the average capacity of
ESS,  which  is  superior.  The  MAADP  method  has  lower

electricity  costs  for  both  homes  and  purchases  less  energy
from the main grid.  

D.  Experimental Comparison of Scenario Two
In  this  section,  we  add  a  restriction  on  the  selling  price  of

the  utility  function.  Specifically,  we  let  the  selling  price  be
close  to  the  price  of  the  main  grid  to  compare  whether  the
strategies of the two methods change.

mi
1 = 0.70 mi

2 = 0.30 mi
3 = 0.01

Setup: The  parameters  of  the  two  home  microgrid  utility
functions  are , ,  and .  Other
settings are the same as those in scenario one.

Result: Due  to  the  restrictions  of  the  utility  function,  the
selling  prices  of  both  homes  are  similar  to  the  price  of
electricity  from  the  main  grid.  Although  the  selling  price  is
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Figure 2 Test result of MAADP in scenario one.
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Figure 3 Test result of DM in scenario one.

 

Table 2 Comparison result in scenario one.
Algorithm Cost1 (cent) Cost2 (cent) ABRC (kWh) ABRC (kWh) Purchased energy (kW)

DM 239.68 143.82 30.05 20.06 65.80

MAADP 99.11 53.12 15.96 11.70 28.17

 

Table 3 Comparison result in scenario two.
Algorithm Cost1 (cent) Cost2 (cent) ABRC (kWh) ABRC (kWh) Purchased energy (kW)

DM 231.66 146.18 29.36 20.23 64.91

MAADP 127.16 28.49 16.13 11.62 28.81
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changed,  the  strategies  of  the  two  home  microgrids  are  the
same as those in scenario one.  The results  of  the comparison
between  the  two  methods  are  shown  in Table  3.  In  the
MAADP method,  the  cost  of  home one  increases,  while  that
of  home  two  decreases.  Because  of  the  higher  selling  price,
home  two  can  earn  more  benefits.  Home  load  in  DM  relies
mainly on energy purchased from the main grid.  

E.  Experiment Summary
Our  proposed  MAADP  method  can  accomplish  the

cooperative  scheduling  of  multi-home  energy  in  two
experimental scenarios. Home one has more load demand, so
home  two  will  provide  part  of  the  energy  to  home  one,
reducing  the  dependence  on  main  grid.  When  the  sold  price
changes, the strategy remains unchanged. DM reduces the use
of  ESS  in  order  to  guarantee  that  the  remaining  capacity  of
ESS  is  maintained  at  the  middle  level,  and  its  load  demand
mainly relies on the main grid. The experimental results show
that  MAADP  can  accomplish  the  cooperative  scheduling  of
multi-home  energy  well  and  reduce  the  overall  expense  and
reliance on the main grid.  

V.  Conclusion

This  work  describes  and  evaluates  an  MAADP  energy
management  method  for  multi-home  cooperative  scheduling
scenarios.  The  method  introduces  a  learning  strategy  of
“centralized  learning  and  decentralized  execution” based  on
the ADHDP method. The MAADP method reduces the cost of
the  entire  microgrid  and  its  dependence  on  the  main  grid  by
achieving  cooperative  scheduling  of  individual  homes.  In
addition,  we  introduce  an  energy  clearing  center  that  can
perform energy exchange between microgrids and centralized
training  of  the  value  network  of  each  home.  Finally,  the
effectiveness  and  performance  of  our  method  are  verified
through  comparative  experiments.  The  shortcoming  of  the
proposed  method  is  that  as  the  number  of  home  microgrids
increases,  it  increases  the  input  state  dimension  of  the  value
network,  and  the  model  training  requires  a  more  significant
computational  effort.  In  future  work,  we  will  consider  more
comprehensive microgrid models and address the problems of
existing schemes.  
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