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   Abstract—Particle  swarm  optimization  (PSO)  algorithm  has
been  widely  used  in  large-scale  complex  problems  such  as
resource  allocation  in  recent  years  because  of  its  simple
implementation  and  easy  operation.  However,  the  slow
convergence  speed  and  low  solution  accuracy  of  the  algorithm
also restrict its further applications. To solve the above problems,
this paper introduces the chromosome crossing characteristics of
genetic  algorithm  (GA),  and  proposes  a  comprehensive  learning
particle  swarm  optimization  based  on  optimal  particle
recombination.  With  the  help  of  the  ability  of  comprehensive
learning  strategy  to  efficiently  explore  the  solution  space,  this
method  organically  combines  the  excellent  information  explored
by each particle through the optimal particle recombination, so as
to  obtain  a  better  individual,  speed  up  the  convergence  of  the
algorithm, and improve the solution accuracy of the problem. The
experimental  results  of  benchmark  function  show  that  the
proposed  algorithm  has  faster  convergence  speed  and
optimization accuracy than the original algorithm, and the results
of  Friedman  test  and  Wilcoxon  signed-rank  test  prove  the
feasibility  of  the  optimal  particle  recombination  operation  in
particle swarm optimization.
    Index Terms—Particle  swarm  optimization, genetic  algorithm,
comprehensive  learning  strategy, optimal  particle  recombination,
Friedman test, Wilcoxon signed-rank test
  

I.  Introduction

Particle  swarm  optimization  (PSO)  is  a  heuristic
optimization  algorithm  based  on  artificial  life,  bird  foraging,
and other swarm intelligence behaviors of biological activities
in  nature [1−3].  Compared  with  other  heuristic  search
algorithms,  PSO  has  been  successfully  applied  to  many
optimization  problems  in  the  real  world,  such  as  machine
learning,  photovoltaic  parameter  identification,  resource
scheduling,  allocation,  etc.,  because  of  its  easy
implementation and simple operation [4−10].

However,  the  heuristic  search  characteristics  of  PSO make
the  algorithm  have  some  problems  such  as  premature
convergence and low solution accuracy [11]. In order to solve
these  problems,  some  scholars  have  made  a  lot  of

improvements  in  particle  behavior,  particle  performance
evaluation, and adaptive adjustment of inertia weight [12]. In
the  basic  PSO  algorithm,  the  inertia  weight  is  proposed  to
adjust  the  exploration  and  exploitation  progress  of  the
algorithm,  which  has  become  a  classic  improved  algorithm
template.  Eberhart  and  Shi [13] unified  the  exploration  and
exploitation  tasks  by  analyzing  the  trajectory  of  particles
moving  in  discrete  time  and  developing  it  into  continuous
time,  and  used  fixed  parameter  contraction  factor  instead  of
inertia  weight  to  improve  the  optimization  ability  of  the
algorithm.  In  Refs. [14−17],  researchers  discuss  the  particle
dynamic  tracking  and  fuzzy  system  of  PSO,  and  study  the
influence of different population topological structures on the
optimization  ability  of  PSO  combined  with  the  connection
relationship  between  individual  and  collective  particles  in
particle population, respectively.

In  addition,  communication  learning  among  particle
populations has become a popular direction of improvement in
recent  years.  Liang  et  al. [18] tried  to  update  the  particle
position  from  the  excellent  information  of  the  historical
optimal  position  of  other  particles  in  the  population,  and
proposed  a  comprehensive  learning  particle  swarm
optimization  (CLPSO).  The  experiment  shows  that  this
strategy  can  keep  the  diversity  of  the  population  for  a  long
time,  explore  the  search  space  more  fully,  and  avoid  the
premature convergence of the population. Yu and Zhang [19]
added a dynamic disturbance term when updating the particle
velocity on the basis of CLPSO, so as to make the best use of
particle swarm exploitation and exploration, thus overcoming
the  problem  of  CLPSO’s  solution  accuracy.  Lynn  and
Suganthan [20] used  a  comprehensive  learning  strategy  to
generate  exploration  and  exploitation  sub-populations,  which
not only kept the performance of algorithm development fully,
but also maintained the diversity of particle swarms. Li et al.
[21] used  an  information  sharing  mechanism  (ISM)  to  share
the  information  among  particles  to  enhance  the
communication  among  particles  and  improve  their  search
ability. On the other hand, it is a good improvement method to
analyze the movement  behavior  of  PSO. In order  to  improve
the convergence speed and global search ability of PSO, Ref.
[22] adaptively  adjusts  the  inertia  weight  and  speed  update
mode  of  particle  swarm  by  dynamically  evaluating  the
distribution  and  fitness  of  particle  swarm.  Tang  et  al. [23]
proposed  a  double  center  particle  swarm  optimization
(DCPSO)  by  analyzing  the  motion  state  of  particles,  which
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can  improve  the  convergence  speed  and  accuracy  of  the
algorithm without increasing the complexity of the algorithm.

Besides  analyzing  the  heuristic  characteristics  of  PSO  to
improve  it,  many  scholars  also  get  inspiration  from  other
algorithms.  Jakubik  et  al. [24] used  Gaussian  pre-process
fitting method to predict the optimal solution direction of the
current  problem  optimization  space,  and  guided  the  particle
swarm search, speeding up the search speed of algorithm and
enhancing  the  diversity  of  particle  swarm.  Liu  et  al. [25]
adjusted  the  acceleration  coefficient  adaptively  through  a
weighting  strategy  of  sigmoid  function  to  improve  the
convergence speed of the algorithm.

Genetic  algorithm  (GA) [26] is  an  optimization  algorithm
developed  by  referring  to  the  phenomena  in  evolutionary
biology,  such  as  heredity,  mutation,  natural  selection,  and
hybridization.  Compared  with  PSO,  this  algorithm  can
maintain  chromosome  diversity  through  mutation,  and  at  the
same  time  carry  out  gene  recombination  through  crossover
operation  to  obtain  better  results.  Therefore,  many  scholars
will use the related concepts of genetic algorithm for reference
to  improve  particle  swarm  optimization.  Another  dynamic
multi-population  particle  swarm  optimization  with
recombination  learning  and  hybrid  mutation  is  proposed  by
reference  to  GA in  Ref. [27],  and  the  optimization  ability  of
the  algorithm  is  improved  by  recombination  learning  and
hybrid  mutation.  Gong  et  al. [28] put  forward  a  genetic
learning  particle  swarm  optimization  algorithm  based  on  the
concept of GA individual reproduction and the social learning
operation of PSO particles.

The  comprehensive  learning  strategy  of  CLPSO can  better
explore the whole problem space in the search process, but the
slow  convergence  rate  has  become  the  deficiency  of  the
further development of the algorithm. In order to improve the
solution  accuracy  and  convergence  speed  of  CLPSO,  this
paper  proposes  a  CLPSO  based  on  optimal  particle
recombination  (OPR)  by  referring  to  the  concept  of
chromosome  crossing  in  GA.  The  algorithm  makes  use  of
CLPSO’s outstanding global exploration ability to effectively
explore  the  excellent  spatial  information  and  save  it  in  each
particle.  By  applying  the  proposed  optimal  particle
recombination  method,  the  excellent  information  found  by
each  particle  in  the  search  space  is  organically  combined,  so
as  to  produce  better  results,  thus  improving  the  convergence
speed and solution accuracy of the algorithm, and at the same
time,  improving  the  efficient  utilization  of  the  excellent
information in the particle swarm.  

II.  Basic Theories
  

A.  PSO
PSO  is  a  heuristic  optimization  method  that  combines

particle  social  learning  behavior  and  group  cooperation  to
realize problem solving. In this algorithm, each particle in the
population is abstracted as a particle with the characteristics of
velocity  and  position.  With  the  optimization  process,  each
particle updates its velocity and position according to Eqs. (1)
and  (2)  under  the  guidance  of  the  global  optimal  extremum
and individual extremum.

 

Vi = Vi+ c1r1×
(
pbesti−Xi

)
+ c2r2×(

gbest−Xi
) (1)

In  Eq.  (1),  several  key  elements  constitute  the  operational
framework  of  the  particle  swarm  optimization  algorithm.
Here, Vi symbolizes the velocity of particle i,  determining its
traversal  pace  and  direction  through  the  solution  landscape.
Concurrently, Xi denotes the instantaneous location of particle
i at any given step within the algorithm’s progression

Embedded within each particle’s strategy is its personal best
position, pbesti, a critical piece of information storing the most
favorable  location  encountered  by  particle i throughout  its
search  endeavor.  On  a  higher  level,  the  global  best  position,
gbest,  acts  as  a  guiding  beacon  for  the  entire  swarm,
representing  the  peak  of  collective  achievement  and  steering
the particles collectively towards the globally optimal solution
by embodying the best position found across the population.

To  facilitate  this  dynamic  navigation,  two  acceleration
constants c1 and c2 serve  as  learning  rates,  with c1
encouraging  movement  towards  the  individual  pbesti and c2
promoting  alignment  towards  the  swarm’s  gbest.  This  dual
mechanism  fosters  both  individual  exploitation  and  social
exploration.  Additionally,  randomness  is  injected  into  the
system through two uniformly distributed random numbers, r1
and r2,  each  ranging  within  the  interval [0,  1],  ensuring  a
balance  between  deterministic  movements  and  stochastic
explorations,  thereby  enhancing  the  algorithm’s  adaptability
and search efficiency.
 

Xi = Xi+Vi (2)

pbest gbest

pbest gbest

The guidance  of  and  to  particles  enables  them
to explore extensively in the search space, and the acceleration
coefficients  of  and  respectively  represent  the
influence  degree  of  particle  velocity  by  them.  In  order  to
further  balance  the  global  search  ability  and  local  search
ability  of  particle  swarm optimization,  Shi  and  Eberhart [12]
introduced  the  inertia  weight ω on  the  basis  of  Eq.  (1),  and
used  Eq.  (3)  to  update  the  speed.  This  improvement  greatly
improved the optimization ability of the algorithm, and at the
same time it became the improved standard algorithm today.
 

Vi = ωVi+ c1r1×
(
pbesti−Xi

)
+ c2r2×(

gbest−Xi
) (3)

  

B.  GA
GA  is  an  optimization  model  inspired  by  evolution.  This

algorithm encodes the potential solutions of specific problems
on  simple  chromosome-like  data  structures,  and  applies  the
recombination  algorithm  to  these  structures  to  retain  key
information. GA initializes a certain number of chromosomes
randomly,  evaluates  these  structures  in  a  specific  way,  and
allocates  reproductive  opportunities  in  such  a  way  that  those
chromosomes  that  represent  better  solutions  to  target
problems  have  more “reproductive” opportunities  than  those
with  poor  solutions.  The “advantages” of  the  solution  are
usually defined according to the current chromosome. In GA,
there  are  mainly  the  following  three  operations:  selection,
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crossover,  and  mutation.  At  the  same time,  there  are  a  lot  of
optional  methods  in  the  above  three  operations.  In  the
selection  operation,  you  can  choose  roulette,  Boltzmann
selection [29] and  other  methods.  There  are  also  a  lot  of
crossover  technologies  in  crossover  operation,  but  the
mainstream  can  be  divided  into  two  types:  single-point
crossover and double-point crossover, as shown in Fig. 1.
 
 

Parent
solution 

Child
solution 

Single-point crossover Double-point crossover

Intersection
 
Figure 1 Schematic diagram of interlaced operation.
 

After the crossover operation is completed, GA will mutate
with  low  probability  for  every  bit  in  the  population.  In  real-
valued functions optimization, the length of GA chromosome
is  closely  related  to  the  accuracy  of  solution.  In  addition,  in
the  process  of  optimization,  the  chromosome  coding  and
decoding  operation  is  required  when  evaluating  the
optimization scheme.  

III.  Comprehensive Learning Particle Swarm
Optimization Based on Optimal Particle

Recombination
  

A.  Comprehensive Learning Strategy

gbest

In  classical  PSO,  the  trajectory  of  each  particle  is  affected
by  both  global  extremum  and  individual  extremum.  Because
the  movement  of  the  whole  particle  population  will  be
affected by the global extreme value, the particle swarm in the
classical  PSO will  converge  to  the  vicinity  of  quickly,
which  will  lead  to  premature  convergence  of  the  particle
swarm,  and  it  is  impossible  to  explore  a  wider  area  of  the
search  space  more  widely.  Therefore,  the  classical  PSO  can
get  a  high-precision  solution  in  the  single-mode  function
relatively  quickly.  However,  in  the  multi-mode  function
optimization, too fast convergence may cause the algorithm to
fall  into  the  local  optimum,  so  that  it  cannot  get  a  more
accurate  solution.  In  order  to  give  PSO a  better  optimization
ability  in  multi-modal  functions,  the  particle  velocity  is
updated by Eq. (4).
 

vd
i = ωvd

i + crd
i ×
(
pbestdfi(d)− xd

i

)
(4)

vd
i xd

i rd
iwhere c is  the  comprehensive learning factor, , ,  and 

represent the flight  velocity,  position,  and random number of
the i-th particle in the d-th dimension, and fi(d) indicates that
pbest represents the optimal value of the evaluation function f
for the i-th particle, respectively.

gbest pbestdfi(d)

pbestdfi(d)

At this time, the update of particles is no longer affected by
the  global  optimal ,  but  guided  by ,  where  the
calculation rule of  is shown in Eq. (5). By using the
new  speed  update  method  to  control  the  particle  swarm  to

search  for  the  optimized  space,  each  particle  can  explore  the
surrounding area more fully.
 

pbestdfi(d) =

pbestdi , rd
i < Pci;

pbestdj , otherwise
(5)

pbestdi
pbestdj

where  represents the personal best position of particle i
in  dimension d,  while  represents  the  personal  best
position of another particle j in dimension d.

pbestdfi(d)
Pci rd

i
Pci

In  Eq.  (5),  the  choice  of  is  determined  by  the
probability .  When  the  random  probability  is  greater
than , it is guided by the historical optimal position of the
current  particle  itself,  otherwise  it  is  guided  by  the  historical
optimal  position  of  other  particles.  When  the  particle  is
extensively explored, but the individual optimal position is not
updated, it means that the particle updated by Eq. (4) may fall
into  local  optimum.  Therefore,  when  the  number  of  time  of
stopping  update  reaches  the  stagnation  coefficient m,  the
particle  velocity  update  becomes  Eq.  (3),  and  the  current
particle  is  guided  to  other  areas  for  extensive  search  through
the global optimal position.  

B.  Optimal Particle Recombination Operation

pcross1
pcross2

pi
pr

In PSO population, individual particles are independent and
autonomous,  and  their  behaviors  will  be  influenced  by  the
global optimal particles,  but the possible optimal information
cannot  be  shared  among  particles,  so  the  optimization
efficiency  and  accuracy  will  be  affected  to  some  extent.  In
GA,  the  corresponding  positions  of  two  outstanding
chromosomes can be exchanged by chromosome crossing, so
that  outstanding  individuals  can  exchange  information
directly.  Therefore,  in  order  to  further  improve  the
convergence  speed  and  optimization  accuracy  of  particle
swarm  optimization,  this  paper  proposes  an  optimal  particle
recombination operation based on the social learning mode of
PSO,  which  occurs  between  optimal  particles.  As  this  seed
contains  the  best  information  of  each  particle  and  the
population,  it  is  possible  to  recombine  the  best  information
with  a  high  probability  through  the  recombination  operation,
thus  obtaining  a  better  optimal  position.  The  reorganization
execution  equation  is  shown  in  Eq.  (6),  where  and

 are the offspring results of reorganization of the current
optimal  position  and  the  random  individual  historical
optimal position , respectively.
 

pi = arg min { f (pi) , f (pr) , f (pcross1) , f (pcross2)} (6)

where f represents the corresponding evaluation function.
In  the  recombination  operation,  in  order  to  enrich  the

diversity  of  recombination  operations  and  better  recombine
the excellent information in the population, we select the type
of  recombination  operation  through  a  random  probability r.
When the random probability r is greater than 0.5, we perform
single-point  cross  recombination,  and  when  the  random
probability r is  less than or equal to 0.5,  we perform double-
point cross recombination. The pseudo-code of OPR is shown
in Algorithm 1.
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Algorithm 1　OPR pseudo-code
1 if r > 0.5 then
2 | [pcross1, pcross2] = SinglePointCross (pi, pr);
3 else

5 end

7 Finish

4 | [pcross1, pcross2] = DoublePointCross (pi, pr);

6 pi = arg min{f (pi), f (pr), f (pcross1), f (pcross2) };

 
   

C.   Particle  Optimization  Stagnation  and  Optimal  Particle
Recombination Adaptation

pbestdfi(d)

In  the  process  of  comprehensive  learning,  the  particle  still
falls  into  the  local  optimal  area  when  exploring  its
surrounding  area  under  the  comprehensive  learning  strategy.
At  this  time,  the  particle  cannot  jump out  of  the  current  area
only through  guidance, so that it cannot continue to
play  its  role  of  extensive  exploration  in  space.  Therefore,  in
order  to  solve  this  problem,  the  comprehensive  learning
strategy  keeps  the  speed  update  mode  of  classical  particles,
and  sets  the  stagnation  coefficient m.  When  a  particle  stops
updating  more  than  this  value,  the  particle  will  update
according  to  Eq.  (3),  and  the  current  particle  state  will  be
activated  by  the  guidance  of  the  global  optimal  particle,  so
that the particle can continue to search in space.

When  adapting  the  optimal  particle  recombination
operation, we first need to clarify the purpose of the operation.
Because  the  optimal  operation  is  to  make  the  excellent
information  in  the  particle  swarm  exchange  with  each  other
during  the  recombination  process,  we  should  try  our  best  to
make  the  particle  swarm  complete  full  exploration,  and  then
combine the excellent information of each particle through the
recombination operation to obtain better results. In this paper,
after  a  lot  of  tests,  we  recommend  that  when  the  number  of
iterations  is  between [0.6T,  0.8T] (where T represents  the
maximum number  of  iterations  for  the  algorithm to  run),  the
optimal particle recombination should be started.

gbest

In addition, in order to further optimize the performance of
the  algorithm  and  improve  the  optimization  efficiency,  in
CLPSO-OPR,  we  set  up  two  optimal  particle  recombination
operations,  one  is  the  individual  historical  optimal  position
recombination  and  the  other  is  the  global  historical  optimal
position  recombination.  The  recombination  of  individual
historical  optimal  particles  occurs  in  the  process  of  particle
stagnation  of  comprehensive  learning  strategy.  When  a
particle  stagnates,  it  means  that  the  area  around  the  particle
has  been  fully  exploited,  and  the  particle  will  retain  the
optimal  information  of  the  current  area.  Therefore,  using

 to  recombine  with  the  current  particle  will  obtain  the
excellent  information  of  the  particle  with  a  high  probability,
and  at  the  same  time  greatly  improve  the  global  optimal
position. The pseudo-code of the final comprehensive learning
strategy  is  shown  in  Algorithm  2,  in  which N represents  the
number of particles in the particle swarm within the algorithm.
The reorganization of  the global  optimal  position takes  place
in  the  whole  algorithm cycle.  When the  number  of  iterations
of the algorithm is able to trigger the reorganization operation,
the  global  optimal  historical  position  will  randomly  select  a
particle optimal position for reorganization. At the same time,
in  this  reorganization,  the  four  positions  after  reorganization

will be evaluated in turn, and the two optimal positions will be
updated  to  pbest  and  gbest,  which  will  speed  up  the
population  convergence  and  improve  the  optimization
accuracy of the algorithm.  

D.  CLPSO-OPR

gbest

CLPSO-OPR  improves  the  optimization  ability  of  the
algorithm in the multi-modal problem model by virtue of the
excellent  wide-area  exploration  ability  of  the  comprehensive
learning strategy, and reduces the risk of the algorithm falling
into  the  local  optimum.  Combining  the  concept  of
chromosome  crossing  in  genetic  algorithm,  we  propose  an
optimal particle recombination method, and apply the optimal
particle  recombination  in  the  process  of  comprehensive
learning  strategy  and  global  optimal  update.  The  optimal
position  information  of  each  particle  in  its  respective  area  is
collected  by  the  individual  historical  optimal  particle
recombination  operation,  which  effectively  improves  the
optimization efficiency. At the same time, in the late stage of
global optimization, the global optimal position reorganization
is  used  to  quickly  collect  the  optimal  information  in  the
population and summarize it to the global optimal position, so
as  to  further  improve  the  optimization  accuracy  and  enable

 to better guide other particles to search. Compared with
the  original  algorithm,  CLPSO-OPR  does  not  increase  the
complexity  of  algorithm  space  and  the  difficulty  of
implementation, and its algorithm flow chart is shown in Fig. 2.  

IV.  Experimental Results and Analysis
  

A.  Platform Construction and Preparation before Testing
The software  environment  and  hardware  environment  used

in  this  test  are  configured  as  follows:  Windows 11  operating
system,  Matlab2020b  running  environment,  Intel  (R)  Core
(TM)  i7-9700 CPU  with  the  main  frequency  of  3.00  GHz，

 

Algorithm 2　Comprehensive learning strategy pseudo-code
for i = 1:N do1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

if m ≤ StopTimesi then 

if ri  > Pci thend

if f (xi) < f (pbesti) then

if f (xi) < f (gbest) then

pbesti = xi;

gbest = xi;

pbestfi (d) = pbesti ;d d

pbestfi (d) = pbestj ;d d

xi  = xi + vi
d d d

Vi = ωVi + c1r1 (pbesti − Xi) + c2r2 (gbest−Xi);

StopTimesi = 0;

StopTimesi = 0;

StopTimesi = StopTimesi + 1;

for d = 1:dimension do

Execute OPR;

else

else

else

vi  = ωvi + cri (pbestfi (d) − xi );d d d d d
end

end

end
end

end
Finish

end

X = randperm (N, 1);
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8  GB  of  memory.  The  selected  comparison  algorithms  are
OPSO [12], VPSO [13], CLPSO [18], adaptive particle swarm
optimization  (APSO) [22],  heterogeneous  comprehensive
learning  particle  swarm  optimization  (HCLPSO) [20],
competitive  and  cooperative  particle  swarm  optimization
(CCPSO)-ISM [21],  DCPSO [23],  and  adaptive  weighting
particle swarm optimization (AWPSO) [25], respectively. The
algorithm  parameters,  particle  population  size,  and  the
maximum  number  of  iterations  are  shown  in Table  1.  Parts
such as  Sphere,  Rosenbrock,  and other  classical  optimization
problems are selected as benchmark functions, and the details
are shown in Table 2,  in which rows 1−6 and rows 7−12 are
unimodal and multi-modal functions, respectively.

In Table  2, D represents  the  solution  dimension  of  the
problem,  and f*  is  the  theoretical  optimal  value  of  the
corresponding  benchmark  function  in  the  corresponding
dimension.

In this paper, minimum (min), mean, and standard deviation
(std)  are  selected  as  the  basic  evaluation  indices,  which  can

represent  the  best  optimization  ability,  average  optimization
effect,  and  optimization  stability  of  the  algorithm,  and  can
intuitively  reflect  the  performance  of  each  algorithm  in  the
corresponding benchmark function. In addition, statistical test
method is  one of  the key methods to  test  the performance of
optimization algorithm, and more reliable conclusions can be
drawn through tests [30]. In this paper, Friedman test is used
to  verify  the  differences  among the  calculation  methods,  and
Wilcoxon  signed-rank  test  is  further  used  to  verify  the
significance  level  of  the  differences  between  CLPSO-OPR
and other comparison algorithms.  

B.  Analysis of Algorithm Test Results
According  to  the  settings  of  the  above  experimental

environment,  each  algorithm  completed  independent  and
repeated  optimization  experiments  in  all  test  functions,  and
the detailed results are shown in Table 3. It can be seen from
the results in Table 3 that CLPSO-OPR is superior to the other
seven  improved  PSO  algorithms  in  three  indices  in  the  test
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Figure 2 CLPSO-OPR execution flow chart.

 

Table 1 Parameter setting of PSOs.
Algorithm Related parameters Population size (N) Iterative upper limit

OPSO ω = [0.9, 0.4], c1 = 2, c2 = 2 30 5000
VPSO χ = 0.729844, c1 = 2.05, c2 = 2.05 30 5000

CLPSO ω = [0.9, 0.4], c = 1.49445, c1 = 2, c2 = 2, m = 7 30 5000
DCPSO ω = [0.95, 0.30], c1 = 2, c2 = 2 30 5000

HCLPSO ω = [0.99, 0.20], c1 = [2.5, 0.5], c2 = [0.5, 2.5], ct = [3.0, 1.5] 30 5000
CCPSO-ISM ω = 0.6, c = 2, p = 0.05 30 5000

AWPSO ω = [0.9, 0.4], a = 0.000035s, b = 0.5, chc = 0, d = 1.5 30 5000
CLPSO-OPR ω = [0.9, 0.4], c = 1.49445, c1 = 2, c2 = 2, m = 7 30 5000

Note: In VPSO, χ represents the contraction factor. In HCLPSO, ct stands for the time varying acceleration coefficient. In CCPSO-ISM, p is the cooperative
behavior control parameter. In AWPSO, a signifies the steepness of the curve, s represents the search range of the optimization problem, b indicates the peak
value of the curve, chc denotes the horizontal coordinate of the center point of the curve, and d is a normal numerical value, respectively.

CHEN et al.: COMPREHENSIVE LEARNING PARTICLE SWARM OPTIMIZATION BASED ON OPTIMAL PARTICLE RECOMBINATION 25 



 

Table 2 Information of benchmark function.
Type of function Function name Name of benchmark function D f* Search space

Unimodal

f1(x) Quadric 30 0 [−10, 10]
f2(x) Sphere 30 0 [−5.12, 5.12]
f3(x) Schwefel’s P22 30 0 [−10, 10]
f4(x) Rosenbrock 30 0 [−5, 10]
f5(x) Sum squares 30 0 [−10, 10]
f6(x) Step 30 0 [−100, 100]

Multi-modal

f7(x) Ackley 30 0 [−32, 32]
f8(x) Michalewicz 10 −9.66 [0, π]
f9(x) Schwefel 30 0 [−500, 500]
f10(x) Dixon-price 30 0 [−10, 10]
f11(x) Griewank 30 0 [−600, 600]
f12(x) Rastrigin 30 0 [−5.12, 5.12]

 

Table 3 Comparison on basic test suite. Bold indicates the optimal value solved by all current algorithms.

Function Criterion
Experiment result

OPSO VPSO CLPSO DCPSO HCLPSO CCPSO-ISM AWPSO CLPSO-OPR

f1

min 1.17E−03 1.32E−10 9.61E−04 1.62E−04 3.65E−14 3.79E+00 6.32E−06 3.75E−07
mean 2.51E+00 2.56E+00 5.05E−03 2.53E−03 2.63E−07 8.39E+00 3.45E−01 4.82E−06
std 7.35E+00 1.13E+01 3.90E−03 2.37E−03 4.65E−06 2.05E+00 5.96E+00 4.79E−06

f2

min 2.63E−36 6.03E−92 9.25E−57 1.31E−61 1.89E−100 4.40E−25 1.47E−33 4.86E−71
mean 4.36E−32 9.44E−77 4.66E−55 2.50E−55 3.78E−80 2.33E−21 7.41E−21 2.25E−67
std 1.67E−31 8.54E−76 5.52E−55 2.08E−54 3.74E−79 1.48E−20 7.06E−20 3.20E−67

f3

min 1.85E−22 1.85E−27 1.49E−32 1.30E−36 9.03E−18 9.20E−10 3.41E−13 2.11E−40
mean 2.17E−19 1.29E−12 1.57E−31 7.31E−31 3.88E−09 2.66E−06 5.08E−07 1.84E−39
std 1.02E−18 8.08E−12 1.07E−31 2.48E−30 2.08E−08 5.95E−06 2.18E−06 1.75E−39

f4

min 4.83E+00 1.24E−06 3.12E−01 2.17E+01 1.19E−05 7.39E−01 2.86E−02 1.20E−04
mean 1.37E+02 8.37E+01 4.76E+01 2.66E+01 3.60E+01 3.15E+01 3.66E+02 1.21E−01
std 2.47E+02 3.67E+02 3.54E+01 7.23E−01 2.98E+01 7.07E−01 2.51E+03 4.29E−01

f5

min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
mean 0.00E+00 2.47E+00 0.00E+00 0.00E+00 6.00E−02 0.00E+00 4.00E−02 0.00E+00
std 0.00E+00 4.55E+00 0.00E+00 0.00E+00 2.39E−01 0.00E+00 1.97E−01 0.00E+00

f6

min 1.86E−34 4.68E−89 1.28E−54 1.32E−101 7.77E−102 5.59E−24 2.53E−33 1.41E−67
mean 6.60E−31 6.37E−75 1.82E−53 2.56E−54 7.85E−87 9.76E−20 5.00E−20 1.27E−65
std 1.92E−30 4.29E−74 1.94E−53 1.45E−53 7.12E−86 6.99E−19 4.49E−19 2.11E−65

f7

min 8.88E−16 4.44E−15 4.44E−15 4.44E−15 2.22E−14 1.71E−10 8.88E−16 7.99E−15
mean 4.44E−15 1.16E−02 4.44E−15 4.34E−15 1.22E−01 2.92E−07 4.48E−15 1.11E−14
std 5.05E−16 1.16E−01 0.00E+00 7.00E−16 3.78E−01 1.71E−06 7.98E−16 3.55E−15

f8

min −5.35E+00 −4.88E+00 −4.47E+00 −7.53E+00 −4.72E+00 −8.07E+00 −5.63E+00 −8.56E+00
mean −3.46E+00 −3.51E+00 −3.18E+00 −6.15E+00 −3.36E+00 −7.14E+00 −3.46E+00 −6.62E+00
std 5.47E−01 4.01E−01 4.42E−01 4.74E−01 4.54E−01 3.36E−01 5.31E−01 8.90E−01

f9

min 3.30E+03 4.34E+03 3.00E+03 1.76E+03 3.59E+03 2.80E+03 3.44E+03 3.82E−04
mean 5.28E+03 5.98E+03 4.45E+03 2.86E+03 4.82E+03 4.12E+03 5.25E+03 3.62E+02
std 6.51E+02 8.15E+02 4.51E+02 4.31E+02 6.61E+02 3.98E+02 7.08E+02 1.95E+02

f10

min 6.67E−01 6.67E−01 6.67E−01 6.67E−01 2.59E+03 6.67E−01 6.67E−01 6.67E−01
mean 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.60E−01 6.67E−01 8.87E+00 6.67E−01
std 1.67E−14 1.20E−15 1.77E−16 1.92E−16 6.67E−02 5.93E−03 4.66E+01 2.56E−16

f11

min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
mean 1.80E−02 3.46E−02 2.61E−03 1.17E−02 1.78E−02 1.45E−03 1.71E−02 8.91E−04
std 1.94E−02 6.53E−02 5.23E−03 1.52E−02 2.33E−02 6.32E−03 1.80E−02 6.36E−04

f12

min 2.49E+01 2.09E+01 9.95E−01 4.98E+00 1.39E+01 1.62E+01 2.19E+01 0.00E+00
mean 4.40E+01 4.54E+01 5.99E+00 2.28E+01 3.35E+01 3.27E+01 4.54E+01 1.95E+00
std 1.33E+01 1.12E+01 3.50E+00 6.65E+00 9.44E+00 1.12E+01 1.60E+01 1.35E+00
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results of four benchmark functions f3, f9, f11, and f12, and the
optimization  accuracy,  average  performance,  and  stability  of
the  algorithm  are  significantly  improved.  In  functions f1, f2,
and f6,  HCLPSO  has  better  optimization  performance.
CCPSO-ISM shows  better  stability  and  average  optimization
ability  in f11 than  other  improved  PSOs.  In  the  benchmark
function f5, all algorithms can get the best results, but OPSO,
CLPSO,  DCPSO,  CCPSO-ISM,  and  CLPSO-OPR  are  more
stable.

In order to analyze the convergence state of each algorithm
conveniently,  this  paper  makes  the  convergence  result
manifest  according  to  Eq.  (7).  Through  this  operation,  the
convergence  state  can  be  analyzed  intuitively  while  keeping
the relative convergence speed unchanged.
 

datashow =
k√datareal (7)

where datareal represents the real data, k stands for the square
root constant,  and datashow represents the relative values used
in plotting the reduced-order image, respectively.

It can be seen from the convergence state of each algorithm
in the corresponding function in Fig. 3 that CLPSO-OPR has
the  best  performance  in  convergence  speed  and  accuracy  in
functions f3, f8,  and f9 within the specified iteration time, and
HCLPSO  performs  better  in  function f1,  which  can  reach
higher  accuracy  faster  in  the  later  period.  In  a  word,  the
convergence  speed  of  CLPSO-OPR  is  faster  than  that  of
CLPSO,  and  CLPSO-OPR  has  better  optimization  ability  in
multi-modal  functions  compared  with  other  improved  PSO
algorithms.
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Figure 3 Convergence state diagram of each improved algorithm under a fixed number of iterations.
 
  

C.  Comparative Analysis of Reliability Based on Friedman Test
and Wilcoxon Signed-Rank Test

The  Friedman  statistical  test  results  of  each  algorithm  are
shown  in Table  4,  in  which  CLPSO-OPR  ranks  first  among
the eight algorithms in benchmark optimization performance.
The  probability  value  calculated  from  the  statistical  data  of
Friedman  test  strongly  indicates  that  there  are  significant
differences among the eight algorithms. In addition, Wilcoxon
signed-rank  test  results  of  CLPSO-OPR  and  other  reference
algorithms  are  shown  in Table  5.  The  test  results  show  that

CLPSO-OPR shows a significant improvement of significance
level α =  0.05  compared  with  OPSO,  VPSO,  CLPSO,  and
AWPSO.  Compared  with  DCPSO,  HCLPSO,  and  CCPSO-
ISM,  the  difference  between  CLPSO-OPR  and  DCPSO,
HCLPSO, and CCPSO-ISM is not statistically significant, but
it  can  be  seen  from  the  benchmark  function  test  results  that
CLPSO-OPR,  DCPSO,  HCLPSO,  and  CCPSO-ISM  have
their  own  advantages,  but  compared  with  CLPSO,  CLPSO-
OPR has obvious improvement. The statistics of Friedman test
and  Wilcoxon  signed-rank  test  verify  the  general  validity  of
CLPSO-OPR on benchmark problems.  
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V.  Conclusion

According to  the  problems of  slow convergence speed and
low  optimization  accuracy  of  CLPSO  algorithm,  this  paper
proposes CLPSO-OPR. Compared with the original algorithm,
CLPSO-OPR  improves  the  optimization  efficiency,  solution
accuracy, and convergence speed of the algorithm. Inspired by
chromosome  crossing  in  GA,  this  algorithm  proposes  an
optimal particle recombination operation to improve the slow
convergence  speed  of  particle  swarm,  and  at  the  same  time
gives a feasible method of excellent information transmission
among particles, which keeps CLPSO’s excellent multi-modal
development  ability  and  algorithm  optimization  stability,
while  further  enhancing  the  optimization  ability  of  the
algorithm.

Experimental  results  show  that  CLPSO-OPR  proposed  in
this  paper  has  better  optimization  performance  in  benchmark
functions  compared  with  CLPSO,  higher  search  accuracy  in
benchmark  functions,  and  better  average  optimization  effect
and stability. Compared with other improved PSO algorithms,
CLPSO-OPR  has  a  better  overall  performance.  The  optimal
particle  recombination  method  provides  a  new  idea  for  the
improvement  of  current  PSO,  and  also  provides  a  new
solution  for  practical  optimization  problem  models  such  as
neural network training and large-scale complex networks. In
the future, we will further study the improved operation of the
optimal  particle  recombination,  so  as  to  improve  the
optimization efficiency of the algorithm more efficiently.  
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