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   Abstract—This paper addresses the issue of stochastic stability
for  continuous-time  semi-Markovian  jump  neural  networks.
Initially,  according  to  the  characteristics  of  the  time-delay
interval,  the  Lyapunov-Krasovskii  functional  (LKF)  with  the
semi-Markov process is constructed to ensure the stability of the
switching networks. Next, the promoted double integral inequality
lemma  is  utilized  to  estimate  the  weak  infinitesimal  operator  of
the  designed  LKF,  and  this  paper  establishes  a  time-delay
correlation criterion. Moreover, the criterion is combined with the
Lyapunov  stability  theory  to  make  the  system  reach  stability  in
the mean-square sense. Finally, the paper provides an example to
demonstrate the effectiveness of the proposed approach.
    Index Terms—Neural networks (NNs), semi-Markov jump systems
(sMJSs), sojourn-time (ST), stochastic stability analysis
  

I.  Introduction

The operational  stability  of  neural  networks (NNs) is  often
compromised  by  various  external  factors  such  as  component
damage,  subsystem  connection  failure,  and  external
interference,  leading to abrupt  changes in their  structural  and
system parameters. Such sudden changes often exhibit random
characteristics  and  follow  certain  statistical  properties,
including the Markov and semi-Markov properties. Therefore,
these properties  are  essential  for  investigating the stability  of
stochastic neural networks [1, 2].

The  Markov  jump  system  (MJS) [3] is  a  specific  kind  of
stochastic switching system that has been extensively studied
in Refs. [4–8]. The sojourn-time (ST) of the MJS is a random
variable  that  follows  an  exponential  distribution  function
(EDF) [9, 10].  In this  line,  Wang et  al. [11] analyzed the H∞
control  problem  of  continuous-time  hidden  Markov  jump
systems. In Ref. [12], the stability of continuous-time Markov
jump piecewise-affine systems is analyzed. However, the EDF
has  certain  limitations,  such  as  the  system  being  connected
only  with  the  last  mode  and  the  transition  rate  matrix  of  the
MJS  being  time-invariant,  which  restrict  its  practical
applications.

In contrast, the semi-Markov jump system (sMJS) follows a

non-EDF  for  the  ST,  and  the  transition  probability  between
different modes depends on not only the last mode but also the
previous  historical  modes [13].  The  sMJS  relaxes  the
restrictions  of  the  EDF  and  is  useful  for  modeling  more
complex  systems.  Several  studies  have  explored  the  use  of
sMJS  in  complex  system  modeling [14–16].  Recently,
researchers  have  proposed  ST-based  stability  criteria  for  the
sliding-mode  control  (SMC)  problem  of  nonlinear  sMJS  via
the  weak  infinitesimal  operator  theory [17].  The  adaptive
SMC  problem  for  sMJS  has  also  been  investigated  in  Ref.
[18].  Therefore,  sMJS  has  garnered  widespread  attention
among scientists and researchers (see Refs. [19–21]). In terms
of  application,  sMJS  can  be  used  to  model  complex  and
various stochastic systems, and its properties can be employed
to  analyze  fault-tolerant  control  systems [22].  A  specific
practical  application  of  sMJS  can  be  seen  in  the  cognitive
radio  network  in  Ref. [23],  where  it  is  precisely  designed  to
model the stochastic behavior of each channel.

In view of the above consideration, this paper addressed the
stability  problem  of  semi-Markov  jump  system  NNs  that
possesses  time-delay.  Specifically,  utilizing  the  Lyapunov
stability  theory,  an  appropriate  Lyapunov-Krasovskii
functional  (LKF)  is  designed.  Then,  we  utilized  inverted
convex  combination  technology  and  generalized  double
integral inequality to derive the stability condition with time-
delay  and  semi-Markov  jump  process  by  applying  the  weak
infinitesimal  operator  approach.  In  the  end,  the  obtained
results are illustrated through the application of the numerical
examples.  Furthermore, Table  1 describes  the  symbols  and
meanings employed in this paper. If not declared beforehand,
the matrices in this paper have appropriate dimensions.  

II.  Problem Description

In  this  paper,  the  considered  sMJS  model  is  designed  as
follows
 

ẋ(t) = −D(m(t))x(t)+A(m(t))k̃(x(t))+

B(m(t))k̃(x(t−ω(t)))+u(t),
x(t) = δ̃(t), t ∈ [−ω2, 0] , m(0) = m0

(1)

x(t) = [x1(t), x2(t), . . . , xn(t)]T n
⩾

k̃(x(t)) =
[
k̃1 (x1(t)) , k̃2 (x2(t)) , ...,

k̃n (xn(t))
]T

ω(t)
A(m(t)), B(m(t)) , and D(m(t))

where  denotes the -dimensional
neuron  state  vector  of  Eq.  (1). m(t), t  0,  means  the  semi-
Markov  process  (sMP). 

 signifies  the  activation  function  of  the  neuron.
 represents  the  bounded  delay  function. u(t)  denotes  the

control  input.  denote  neuron
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δ̃(t)
t ∈ [−ω2, 0] m0

weight  matrix,  and  they  are  all  matrix  functions  about  sMP.
 denotes  the  initial  continuous  function,  where

 and ω2 is  a  positive constant.  denotes model
initial value.

The conclusions of this paper rely on Assumptions 1 and 2.
ω(t)Assumption 1 　The bounded delay function  satisfies

the following conditions
 

0 ⩽ ω1 ⩽ ω(t) ⩽ ω2,

∂1 ⩽ ω̇(t) ⩽ ∂2 (2)
ω1, ω2, ∂1, and ∂2 > 0where  are known constants.

k̃(x(t))Assumption  2　 It  is  assumed  that  is  bounded  and
satisfies
 

0 ⩽ ϕ−i ⩽
k̃i (s1)− k̃i (s2)

s1− s2
⩽ ϕ+i (3)

s1 , s2, i = 1, 2, . . . , n, ϕ−i , and ϕ+iwhere  mean  known
constants.

Definitions 1 and 2, and Lemmas 1–3 are required.
{mk}

S = {1, 2, . . . , N} mk
{tk}

{hk} tk
t0 = 0 hk
(k−1)

k h0 = 0 and hk = tk − tk−1 k

Definition  1　 Random  processes  take  values  on
,  denotes  state  that  when  the  mode

changes at the k-th transition. And both random processes 
and  have  positive  integer  values,  where  denotes  time
that  when  the  mode  changes  at  the k-th  transition, . 
denotes  ST  that  when  the  mode  changes  from  the -th
transition to the -th transition, .  is a
positive integer [24, 25].

(Ω,F ,P) {m(t), h}t>0 := {mk, hk}
S = {1, 2, . . . , N}

In ,  the  sMP  with
continuous-time  on  finite  state  spaces ,  in
which the state transition rate (TR) matrix is as follows
 

Pr {mk+1 = η,hk+1 ⩽ h+σ | mk = ι,hk+1 > h} ={
πιη(h)σ+o(σ), η , ι;
1+πιι(h)σ+o(σ), η = ι (4)

πιη(h)
t ι η

t+σ, ι , η, TR matrix Π̃ = [πιη(h)]N×N πιι(h) =

−
N∑

η=1,η,ι

πιη(h) σ > 0 σ

lim
σ→0

[o(σ)/σ]

where  Pr  represents  the  probability,  and  means  the
transition  rate  at  time  jumping from  mode  to  mode  at
time  ,  and 

, where  is a constant and o( ) is defined

by =0.

x∗

x∗ =
(
x∗1, x

∗
2, . . . , x

∗
n

)
y(t) = x(t)− x∗

This paper focuses on studying the stability of Eq. (1), and
usually  assuming  that  its  equilibrium  point  exists.  Let

 and ,  so  Eq.  (1)  is
transformed into
 

ẏ(t) = −D(m(t))y(t)+A(m(t))k(y(t))+B(m(t))×
k(y(t−ω(t)))+u(t),

y(t) = δ(t), t ∈ [−ω2, 0]
(5)

k(y(t)) = k̃ (y(t)+ x∗)− k̃ (x∗) δ(t)

Formula (3) ki(0) = 0

where  and  is  the  initial
function, therefore, the main purpose of this paper is changed
from studying the stability of Eq. (1) to studying the stability
of Eq. (5). According to  and , one has
 

0 ⩽ ϕ−i ⩽
ki (s1)− ki (s2)

s1− s2
⩽ ϕ+i , s1 , s2 (6)

δ(t), t ∈ [−ω2, 0]
m0 ∈ S

Definition  2　 For  any  initial  condition 
and , which satisfy
 

lim
t→∞
ε
{w t

0
∥x(s)∥2ds | (δ,m0)

}
⩽∞ (7)

Equation (1) is stochastic stable at the equilibrium point.

β1 β2 T

S α 0 ⩽ α ⩽ 1

[
T S
∗ T

]
⩾ 0,

Lemma 1 Inverted convex combination technology　For
any vectors  and ,  symmetric  matrix ,  arbitrary matrix

,  and  constant , ,  if  satisfying 
Formula (8) is correct [21]
 

1
α
βT

1 Tβ1+
1

1−αβ
T
2 Tβ2 ⩾

[
β1
β2

]T [ T S
∗ T

] [
β1
β2

]
(8)

X1 X2
Y ς1(t) ς2(t)
0 ⩽ ς1 ⩽ ς1(t) ⩽ ς2(t) ⩽ ς2 z(s) : [ς1,

ς2]→ Rn,
w ς2(t)

ς1(t)

w ς2(t)

θ
z(s)dsdθ = ℓT1 ζ1(t)

w ς2(t)

ς1(t)

w θ
ς1(t)

z(s)dsdθ =

ℓT2 ζ2(t) ℓ1 and ℓ2 ∈ Rk×n, and ζ1(t) ζ2(t) ∈ Rk

Lemma  2  Generalized  double  integral  inequality　 For
any  matrices  and ,  symmetric  positive  definite matrix

,  and  two  functions  and ,  which satisfy
,  the  vector  function 

, 
,  matrices  and ,

Formulas (9) and (10) are correct [26]
 

ζT
1 (t)

X1ℓ
T
1 + ℓ1XT

1 −
ς2

12(t)
2

X1Y−1XT
1

ζ1(t) ⩽

w ς2(t)

ς1(t)

w ς2(t)

θ
zT(s)Yz(s)dsdθ (9)

 

ζT
2 (t)

X2ℓ
T
2 + ℓ2XT

2 −
ς2

12(t)
2

X2Y−1XT
2

ζ2(t) ⩽

w ς2(t)

ς1(t)

w θ
ς1(t)

zT(s)Yz(s)dsdθ (10)

ς12(t) = ς2(t)−ς1(t)where .
α1 β

n1 n2

A1 ∈ Rn1×n1 andA2 ∈ Rn2×n2

[
A1 S
∗ A2

]
⩾ 0,

κ > 0, S ∈ Rn1×n2

Lemma  3　 Assume  that  and  are  real  vectors  with
dimensions  and ,  given real symmetric positive definite

matrices ,  if 
for any scalar , Formula (11) is correct [27]
 

−2αT
1 S β ⩽ καT

1A1α1+ κ
−1βTA2β (11)

  

III.  Main Result

To obtain explicit expressions, Eq. (12) is given
 

 

Table 1 Symbol description.
Symbol Meaning

Q−1 Matrix inverse

QT Transpose of a matrix
Q > 0 (< 0) Positive (negative) definite symmetric matrix

0n, 0m×n, and In
n m×n

n
-dimensional zero matrix, -dimensional zero

matrix, and -dimensional identity matrix
αTQ(∗) and αQ(∗)T αTQα and αQαT

sym {Z} Z+ZT

diag {·} Diagonal matrix or block diagonal matrix[
A B
∗ C

] [
A B

BT C

]
(Ω,F ,P)

Ω
F P

Given probability space,  denotes the sample space,
 means a subset of the sample space, and  is the

probability
ε {·} Mathematical expectation for probability

∥·∥ Euclidean norm of a vector
ẋ Derivative of x
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ζ(t) =



yT(t),yT (t−ω1) ,yT(t−ω(t)),yT (t−ω2) ,

1
ω(t)

w T

t−ω(t)
yT(s)ds,

1
ω2−ω(t)

w t−ω(t)

t−ω2
yT(s)ds,

1
ω(t)−ω1

w t−ω1

t−ω(t)
yT(s)ds,kT(y(t)),

kT (y (t−ω1)) ,kT(y(t−ω(t))),

kT (y (t−ω2))



T

(12)

ω(t) = 0 and ω2 = ω(t) = ω1Remark  1　 When ,  based  on
the integral median theorem, it follows that
 

lim
ω(t)→0+

1
ω(t)

w t

t−ω(t)
y(s)ds = y(t) (13)

 

lim
ω(t)→ω−2

1
ω2−ω(t)

w t−ω(t)

t−ω2
y(s)ds = y (t−ω2) (14)

 

lim
ω(t)→ω−1

1
ω(t)−ω1

w t−ω1

t−ω(t)
y(s)ds = y (t−ω1) (15)

Hence define
 

1
ω(t)

w t

t−ω(t)
y(s)ds = y(t) (16)

 

1
ω2−ω(t)

w t−ω(t)

t−ω2
y(s)ds = y (t−ω2) (17)

 

1
ω(t)−ω1

w t−ω1

t−ω(t)
y(s)ds = y (t−ω1) (18)

 

1
ω2−ω(t)

w t−ω(t)

t−ω2
ẏ(s)ds = ẏ (t−ω2) (19)

For simplicity, we define the following representations
 

Γ1 = [−D(m(t)),0n×6n,A(m(t)),B(m(t)),0n×2n] (20)
 

el =
[
0n×(l−1)n, In, 0n×(11−l)n

]
, l = 1,2,3, ...,11 (21)

 

ϖr = [er,er+7] , r = 1,2,3,4 (22)
 

Y1 = [Π1,Π2] , Y2 = [Π2,Π3] (23)
 

ψ5 = e2− e3, ψ6 = e3− e4 (24)
 

Π1 = [e1− e3,e1+ e3−2e5] (25)
 

Π2 = [e3− e4,e3+ e4−2e6] (26)
 

Π3 = [e2− e3,e2+ e3−2e7] (27)
 

L1 = diag
{
ϕ−1ϕ

+
1 ,ϕ
−
2ϕ
+
2 , . . . ,ϕ

−
nϕ
+
n

}
(28)

 

L2 = diag
{
ϕ−1 +ϕ

+
1 ,ϕ
−
2 +ϕ

+
2 , . . . ,ϕ

−
n +ϕ

+
n

}
(29)

u(t) ≡ 0The results of the stability analysis of Eq. (5) with 
are given in the rest of this section.

ω1 > 0 ω2 > 0, ∂1 > 0, and ∂2 > 0
P(m(t)) > 0, Ji(m(t)) > 0 Qi > 0, i = 1, 2, 3, O j(m(t)) > 0,
Θ j > 0, R j > 0, j = 1, 2 G1 and G2

L1 and L2
U1, U2, F1 F2, X, Y, and S

Theorem 1　According to Assumption 1, for given scalars
, ,  if  there  exist  matrices

, 
, positive definite matrices ,

positive  diagonal  matrices ,  and  real  matrices  of
appropriate dimension , , Formulas
(30)–(34) hold
 [

Z̃1 X
∗ Z̃1

]
>0,
[

Z̃2 Y
∗ Z̃2

]
>0,
[

G1 S
∗ G2

]
⩾0 (30)

 

N∑
η=1

πιη(h)Jµ(η) ⩽ Oµ(ι), µ = 1,2 (31)

 

N∑
η=1

πιη(h)
3∑

u=2

Ju(η) ⩽ O2(ι) (32)

 

N∑
η=1

ωµπιη(h)Oµ(η) ⩽ Rµ, µ = 1,2 (33)

 
ℑ(ω(t), ω̇(t))

∣∣∣
ω(t)=ω1,ω̇(t)=∂1

< 0,
ℑ(ω(t), ω̇(t))

∣∣∣
ω(t)=ω1,ω̇(t)=∂2

< 0,
ℑ(ω(t), ω̇(t))

∣∣∣
ω(t)=ω2,ω̇(t)=∂1

< 0,
ℑ(ω(t), ω̇(t))

∣∣∣
ω(t)=ω2,ω̇(t)=∂2

< 0

(34)

Z̃1 Z̃2 Z̃1 = diag{Θ1, 3Θ1}
Z̃2 = diag{Θ2, 3Θ2}
where  matrices  and  satisfy  and

, and
 

ℑ(ω(t), ω̇(t)) =
[
ℑ1(ω(t), ω̇(t)) ℑ2(ω(t), ω̇(t))

∗ −ℑ3(ω(t), ω̇(t))

]
(35)

 

ℑ1(ω(t), ω̇(t)) = ℑ̃1(ω(t), ω̇(t))+ ℑ̃2(ω(t), ω̇(t))+

ℑ̃3(ω(t), ω̇(t))+ ℑ̃4(ω(t), ω̇(t)) (36)
 

ℑ̃1(ω(t), ω̇(t)) = sym
{
eT

1Γ1
}
+ eT

1

N∑
η=1

πιη(h)P(η)e1+

eT
1 (J1(ι)+J2(ι)+J3(ι)+ω1O1(ι) +
ω1R1+ω2O2(ι)+ω2R2)e1−
eT

2J1(ι)e2− eT
4J2(ι)e4− (1− ω̇(t))eT

3×
J3(ι)e3+ϖ

T
1 Q1ϖ1−ϖT

2 Q1ϖ2+ϖ
T
2×

Q2ϖ2− (1− ω̇(t))ϖT
3 Q2ϖ3+ (1− ω̇(t))×

ϖT
3 Q3ϖ3−ϖT

4 Q3ϖ4+ω2Γ
T
1Θ1Γ1+

(ω2−ω1)ΓT
1Θ2Γ1+

1
2

(ω2−ω1)2ΓT
1×

(G1+G2)Γ1+2ψ5SψT
6 (37)

 

ℑ̃2(ω(t), ω̇(t)) = U1ψT
1 (ω(t))+ψ1(ω(t))UT

1+

U2ψT
2 (ω(t))+ψ2(ω(t))UT

2 +F1ψT
3 (ω(t))+

ψ3(ω(t))FT
1 +F2ψT

4 (ω(t))+ψ4(ω(t))FT
2 (38)

 

ℑ̃3(ω(t), ω̇(t)) = sym{−eT
8ℵe8+ eT

1 L2ℵe8− eT
1 L1ℵe1−

eT
10ℵ̃e10+ eT

3 L2ℵ̃e10− eT
3 L1ℵ̃e3} (39)

 

ℑ̃4(ω(t), ω̇(t)) = − 1
ω2
Y1Λ1YT

1 −
1

ω2−ω1
Y2Λ2YT

2 (40)
 

ℑ2(ω(t), ω̇(t)) = [(ω2−ω(t))U1, (ω(t)−ω1)U2,

(ω2−ω(t)) F1, (ω(t)−ω1) F2] (41)
 

ℑ3(ω(t), ω̇(t)) = 2diag {G1,G1,G2,G2} (42)
ψT

1 (ω(t)) = (ω2−ω(t))(e3− e6), ψT
2 (ω(t)) = (ω(t)−ω1)

(e2− e7), ψT
3 (ω(t)) = (ω2−ω(t))(e6− e4), ψT

4 (ω(t)) = (ω(t)−ω1)

(e7− e3) Λ1 =

[
Z̃1 X
∗ Z̃1

]
Λ2 =

[
Z̃2 Y
∗ Z̃2

]
ℵ ℵ̃

where 

, , and , respectively.
 and  represent matrices.
Then, Eq. (5) with Formula (2) is stochastic stable in mean

square at the equilibrium point.
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Proof 　To prove the stability of Eq. (5) stimulated by Ref.
[21], we design the following LKF V(y(t), m(t))
 

V(y(t),m(t)) =
2∑

g=1

Vg(y(t),m(t))+
5∑

ḡ=3

Vḡ(y(t), t) (43)

where
 

V1(y(t),m(t)) = yT(t)P(m(t))y(t) (44)
 

V2(y(t),m(t)) =
w t

t−ω1
yT(s)J1(m(t))y(s)ds+

w t

t−ω2
yT(s)J2(m(t))y(s)ds+

w t

t−ω(t)
yT(s)J3(m(t))y(s)ds+

w 0

−ω1

w t

t+θ
yT(s)O1(m(t))y(s)dsdθ+

w 0

−ω2

w t

t+θ
yT(s)O2(m(t))y(s)dsdθ+

w 0

−ω1

w t

t+θ
yT(s)R1y(s)dsdθ+

w 0

−ω2

w t

t+θ
yT(s)R2y(s)dsdθ (45)

 

V3(y(t), t) =
w t

t−ω1
ηT(s)Q1η(s)ds+

w t−ω1

t−ω(t)
ηT(s)Q2η(s)ds+

w t−ω(t)

t−ω2
ηT(s)Q3η(s)ds (46)

 

V4(y(t), t) =
w 0

−ω2

w t

t+θ
ẏT(s)Θ1ẏ(s)dsdθ+

w −ω1

−ω2

w t

t+θ
ẏT(s)Θ2ẏ(s)dsdθ (47)

 

V5(y(t), t) =
w −ω1

−ω2

w −ω1

θ

w t

t+s
ẏT(u)G1ẏ(u)dudsdθ+

w −ω1

−ω2

w θ
−ω2

w t

t+s
ẏT(u)G2ẏ(u)dudsdθ (48)

V(y(t),m(t))
L

Based  on  Eq.  (5),  the  purpose  is  to  calculate  the  weak
infinitesimal  operator  of .  The  following  will
introduce the definition of the weak infinitesimal operator 
 

LV(y(t),m(t)) =

lim
σ→0+

1
σ

[ε{V(y(t+σ),m(t+σ)) | y(t),m(t)}−

V(y(t),m(t))] (49)
σ > 0

m(t) = ι, and m(t+σ) = η
where  denotes  a  sufficiently  small  constant,

 .  In  the  light  of  Ref. [28] utilizing
the full probability equation
 

LV1(y(t),m(t)) =

lim
σ→0+

1
σ

{ N∑
η=1

pιη(t,σ)V1(y(t+σ),m(t+σ))−

V1(y(t),m(t))
}
, η , ι =

lim
σ→0+

1
σ

{ N∑
η=1,η,ι

pιη(t,σ)yT(t+σ)P(m(t+σ))y(t+σ)+

pιι(t,σ)yT(t+σ)P(m(t))y(t+σ)− yT(t)P(m(t))y(t)
}

(50)

ι, η ∈ Swhere , and

 

pιη(t,σ) = qιη
∆ι(h+σ)−∆ι(h)

1−∆ι(h)
,

pιι(t,σ) =
1−∆ι(h+σ)

1−∆ι(h)
(51)

∆ι(h)
h ι qιη

ι η

where  is  the cumulative distribution function (CDF) of
 when system remains in  the mode ,  and  is  probability

density function of system jumping from mode  to mode .
Remark 2　According  to  properties  of  CDF and  Taylor’s

formula, via simple calculation, we get
 

σ > 0, lim
σ→0

o(σ)
σ
= 0,

lim
σ→0+

∆ι(h+σ)−∆ι(h)
σ (1−∆ι(h))

= πι(h),

lim
σ→0+

∆ι(h+σ)−∆ι(h)
1−∆ι(h)

= 0,

lim
σ→0+

1−∆ι(h+σ)
1−∆ι(h)

= 1 (52)

y(t+σ) can be expressed as y(t+σ) = y(t)+ ẏ(t)σ+o(σ)
y(t+σ)

Similarly, due to the Taylor’s formula, an approximation of
,  then,

substituting  an  approximation  of  into  Eq.  (50),  we
have
 

LV1(y(t),m(t)) =

lim
σ→0+

1
σ

N∑
η=1,η,ι

qιη
∆ι(h+σ)−∆ι(h)

1−∆ι(h)
yT(t)P(ι)y(t)−

lim
σ→0+

1
σ

∆ι(h+σ)−∆ι(h)
1−∆ι(h)

yT(t)P(ι)y(t)+

lim
σ→0+

1
σ

[σ
1−∆ι(h+σ)

1−∆ι(h)
yT(t)P(ι)ẏ(t)+

σ
1−∆ι(h+σ)

1−∆ι(h)
ẏT(t)P(ι)y(t)] (53)

along Eq. (52), we obtain
 

LV1(y(t),m(t)) =

N∑
η=1,η,ι

qιηπι(h)yT(t)P(m(t))y(t)−

πι(h)yT(t)P(m(t))y(t)+ sym
{
yT(t)P(m(t))ẏ(t)

}
=

N∑
η=1

πιη(h)yT(t)P(m(t))y(t)+ sym
{
yT(t)P(m(t))ẏ(t)

}
=

ζT(t)

sym
{
eT

1 P(ι)Γ1
}
+ eT

1

N∑
η=1

πιη(h)P(η)e1

ζ(t) (54)

πιη(h) = qιηπι(h) qιι = −1where  and .

G (t,J1(m(t))) =
w t

t−ω1
yT(s)×

Q1(m(t))y(s)ds
Inspired  by  Ref. [29],  setting 

, Eq. (55) is easily verified on the basis of Eq.
(49)
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LG (t,J1(m(t))) =

lim
σ→0+

1
σ

[ε {G (t+σ,J1(m(t+σ))) | m(t) = ι}−

G (t,J1(m(t)))] =

N∑
η=1,η,ι

G (t,J1(m(t+σ)))+ Ġ (t,J1(m(t))) =

N∑
η=1

πιη(h)
w t

t−ω1
yT(s)J1(η)y(s)ds+

[
yT(t)J1(ι)y(t)− yT (t−ω1)J1(ι)y (t−ω1)

]
(55)

V2(y(t)
m(t))

Therefore, we attain weak infinitesimal operator of ,

 

LV2(y(t),m(t)) =
w t

t−ω1
yT(s)

N∑
η=1

πιη(h)J1(η)y(s)ds+

w t

t−ω(t)
yT(s)

N∑
η=1

πιη(h)
3∑

u=2

Ju(η)y(s)ds+

w t−ω(t)

t−ω2
yT(s)

N∑
η=1

πιη(h)J2(η)y(s)ds−
w t

t−ω1
yT(s)O1(ι)y(s)ds−

w t

t−ω(t)
yT(s)O2(ι)y(s)ds−

w t−ω(t)

t−ω2
yT(s)O2(ι)y(s)ds+

w 0

−ω1

w t

t+θ
yT(s)

N∑
η=1

πιη(h)O1(η)y(s)dsdθ−

w t

t−ω1
yT(s)R1y(s)ds+

w 0

−ω2

w t

t+θ
yT(s)×

N∑
η=1

πιη(h)O2(η)y(s)dsdθ−
w t

t−ω2
yT(s)R2y(s)ds+

ζT(t){eT
1 (J1(ι)+J2(ι)+J3(ι)+ω1O1(ι)+

ω1R1+ω2O2(ι)+ω2R2)e1− eT
2J1(ι)e2−

eT
4J2(ι)e4(1− ω̇(t))eT

3J3(ι)e3}ζ(t) (56)

Altering the order of the integral terms derives
 w 0

−ω1

w t

t+θ
yT(s)

N∑
η=1

πιη(h)O1(η)y(s)dsdθ =

w t

t−ω1
(s− t+ω1)yT(s)

N∑
η=1

πιη(h)O1(η)y(s)ds ⩽

w t

t−ω1
yT(s)

N∑
η=1

ω1πιη(h)O1(η)y(s)ds (57)

Similarly, Formula (58) is also true
 w 0

−ω2

w t

t+θ
yT(s)

N∑
η=1

πιη(h)O2(η)y(s)dsdθ ⩽

w t

t−ω2
yT(s)

N∑
η=1

ω2πιη(h)O2(η)y(s)ds (58)

m(t)The  LKF  weak  infinitesimal  operator  without  can  be
calculated by

 

LV3(y(t), t) =

ηT(t)Q1η(t)−ηT(t−ω1)Q1η(t−ω1)+

ηT(t−ω1)Q2η(t−ω1)− (1− ω̇(t))ηT(t−ω(t))Q2×

η(t−ω(t))+ (1− ω̇(t))ηT(t−ω(t))Q3η(t−ω(t))−

ηT(t−ω2)Q3η(t−ω2) =

ζT(t)[[e1,e8]Q1[∗]T− [e2,e9]Q1[∗]T+

[e2,e9]Q2[∗]T− (1− ω̇(t))[e3,e10]Q2[∗]T+

(1− ω̇(t))[e3,e10]Q3[∗]T− [e4,e11]Q3[∗]T]ζ(t) =

ζT(t)[ϖ1Q1ϖ
T
1 −ϖ2Q1ϖ

T
2 +ϖ2Q2ϖ

T
2−

(1− ω̇(t))ϖ3Q2ϖ
T
3 + (1− ω̇(t))ϖ3Q3ϖ

T
3 −ϖ4Q3ϖ

T
4 ]ζ(t)
(59)

 

LV4(y(t), t) =

ω2ẏT(t)Θ1ẏ(t)−
w t

t−ω2
ẏT(s)Θ1ẏ(s)ds+

(ω2−ω1) ẏT(t)Θ2ẏ(t)−
w t−ω1

t−ω2
ẏT(s)Θ2ẏ(s)ds =

ζT(t)
[
ω2Γ

T
1Θ1Γ1+ (ω2−ω1)ΓT

1Θ2Γ1
]
ζ(t)−

w t

t−ω2
ẏT(s)Θ1ẏ(s)ds−

w t−ω1

t−ω2
ẏT(s)Θ2ẏ(s)ds (60)

ω1 < ω(t) < ω2
Θ1 Θ2

For , utilizing the Wirtinger integral inequality
(see Ref. [30]) and Lemma 1 to  and  dependent integral
terms, we get
 

−
w t

t−ω2
ẏT(s)Θ1ẏ(s)ds = −

w t

t−ω(t)
ẏT(s)Θ1ẏ(s)ds−

w t−ω(t)

t−ω2
ẏT(s)Θ1ẏ(s)ds ⩽ ζT(t)

{
1
ω(t)

[e1− e3,e1+

e3−2e5]diag{Θ1,3Θ1}[∗]T+
1

ω2−ω(t)
[e3−

e4,e3+ e4−2e6]diag{Θ1,3Θ1}[∗]T
}
ζ(t) ⩽

− ζT(t)
[

1
ω(t)
Π1Z̃1Π

T
1 +

1
ω2−ω(t)

Π2Z̃1Π
T
2

]
ζ(t) ⩽

1
ω2
ζT(t)Y1Λ1YT

1 ζ(t) (61)

 w t−ω1

t−ω2
ẏT(s)Θ2ẏ(s)ds =

w t−ω1

t−ω(t)
ẏT(s)Θ2ẏ(s)ds−

w t−ω(t)

t−ω2
ẏT(s)Θ2ẏ(s)ds ⩽

1
ω2−ω1

ζT(t)Y2Λ2YT
2 ζ(t) (62)

t > 0, ω(t) = 0, and ω2 = ω(t) =
ω1

Based on Eqs. (16)–(19), for 
, Formulas (61) and (62) still establish Formula (63)
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LV5(y(t), t) ⩽
1
2

(ω2−ω1)2ẏT(t) (G1+G2) ẏT(t)−
w −ω1

−ω2

w t−ω1

t+θ
ẏT(s)G1ẏ(s)dsdθ−

w −ω1

−ω2

w t+θ

t−ω2
ẏT(s)G2ẏ(s)dsdθ =

1
2

(ω2−ω1)2ζT(t)ΓT
1 (G1+G2)Γ1ζ(t)−

w −ω(t)

−ω2

w t−ω(t)

t+θ
ẏT(s)G1ẏ(s)dsdθ−

(ω2−ω(t))
w t−ω1

t−ω(t)
ẏT(s)G1ẏ(s)ds−

w −ω1

−ω(t)

w t−ω1

t+θ
ẏT(s)G1ẏ(s)dsdθ−

w −ω(t)

−ω2

w t+θ

t−ω2
ẏT(s)G2ẏ(s)dsdθ−

(ω(t)−ω1)
w t−ω(t)

t−ω2
ẏT(s)G2ẏ(s)ds−

w −ω1

−ω(t)

w t+θ

t−ω(t)
ẏT(s)G2ẏ(s)dsdθ (63)

G1 G2

U1, U2, F1, and F2

For  and  dependent integral term, there exist matrices
 of appropriate dimensions.  From Lemma

2, one gets
 

−
w −ω(t)

−ω2

w t−ω(t)

t+θ
ẏT(s)G1ẏ(s)dsdθ ⩽

ζT(t){U1ψT
1 (ω(t))+ψ1(ω(t))UT

1 +
1
2

(ω2−ω(t))2×

U1G−1
1 UT

1 }ζ(t) (64)

 

−
w −ω1

−ω(t)

w t−ω1

t+θ
ẏT(s)G1ẏ(s)dsdθ ⩽

ζT(t){U2ψT
2 (ω(t))+ψ2(ω(t))UT

2 +
1
2

(ω(t)−ω1)2×

U2G−1
1 UT

2 }ζ(t) (65)

 

−
w −ω(t)

−ω2

w t+θ

t−ω2
ẏT(s)G2ẏ(s)dsdθ ⩽

ζT(t){F1ψT
3 (ω(t))+ψ3(ω(t))FT

1 +
1
2

(ω2−ω(t))2×

F1G−1
2 FT

1 }ζ(t) (66)

 

−
w −ω1

−ω(t)

w t+θ

t−ω(t)
ẏT(s)G2ẏ(s)dsdθ ⩽

ζT(t){F2ψT
4 (ω(t))+ψ4(ω(t))FT

1 +
1
2

(ω(t)−ω1)2×

F2G−1
2 FT

2 }ζ(t) (67)

ψT
1 (ω(t)) = (ω2−ω(t))(e3− e6), ψT

2 (ω(t)) = (ω(t)−ω1)
(e2− e7), ψT

3 (ω(t)) = (ω2−ω(t))(e6− e4), and ψT
4 (ω(t)) =(ω(t)−

where 
 

ω1) (e7− e3)[
G1 S
∗ G2

]
⩾ 0 ω1 < ω(t) < ω2

,  respectively.  In  the  light  of  Lemma  3,

, for , we get
 

− (ω2−ω(t))
w t−ω1

t−ω(t)
ẏT(s)G1ẏ(s)ds−

(ω(t)−ω1)
w t−ω1

t−ω(t)
ẏT(s)G2ẏ(s)ds ⩽

ω2−ω(t)
ω(t)−ω1

(w t−ω1

t−ω(t)
ẏ(s)ds

)T
G1

(w t−ω1

t−ω(t)
ẏ(s)ds

)
−

ω(t)−ω1

ω2−ω(t)

(w t−ω(t)

t−ω2
ẏ(s)ds

)T
G2

(w t−ω(t)

t−ω2
ẏ(s)ds

)
=

ζT(t)
[
ω2−ω(t)
ω(t)−ω1

ψ5G1ψT
5 +
ω(t)−ω1

ω2−ω(t)
ψ6G2ψT

6

]
ζ(t) ⩽

2ζT(t)ψ5SψT
6 ζ(t) (68)

Noticing Formula (3), similar to Ref. [31], we get
 [

ki (yi(t))−ϕ−i yi(t)
] [

ki (yi(t))−ϕ+i yi(t)
]
⩽ 0,[

ki (yi(t−ω(t)))−ϕ−i yi(t−ω(t))
]
×[

ki (yi(t−ω(t)))−ϕ+i yi(t−ω(t))
]
⩽ 0 (69)

ℵ = diag {q1,q2, . . . ,qn}
ℵ̃ = diag {q̃1, q̃2, . . . , q̃n}

Furthermore,  for  any  matrices  and
, we get

 

0 ⩽ −2
n∑

i=1

qi
[
ki (yi(t))−ϕ−i yi(t)

] [
ki (yi(t))−

ϕ+i yi(t)
]
= 2ζT(t)eT

8ℵe8ζ(t)+

2ζT(t)eT
1 L2ℵe8ζ(t)−2ζT(t)eT

1 L1ℵe1ζ(t) (70)
 

0 ⩽ −2
n∑

i=1

q̃i
[
ki (yi(t−ω(t)))−ϕ−i yi(t−ω(t))

]
×[

ki (yi(t−ω(t)))−ϕ+i yi(t−ω(t))
]
=

−2ζT(t)eT
10ℵ̃e10ζ(t)+2ζT(t)eT

3 L2ℵ̃e10ζ(t)−
2ζT(t)eT

3 L1ℵ̃e3ζ(t) (71)
By combining Eqs. (54) and (56)–(71), Formula (72) is true

 

LV(y(t),m(t)) ⩽

ζT(t)ℑ(ω(t), ω̇(t))ζ(t)+
w t

t−ω1
yT(s)(

N∑
η=1

πιη(h)J1(η)−

O1(ι))y(s)ds+
w t

t−ω(t)
yT(s)(

N∑
η=1

πιη(h)
3∑

u=2

Ju(η)−

O2(ι))y(s)ds+
w t−ω(t)

t−ω2
yT(s)(

N∑
η=1

πιη(h)J2(η)−

O2(ι))y(s)ds+
w t

t−ω1
yT(s)(

N∑
η=1

ω1πιη(h)×

O1(η)y(s)ds−R1)y(s)ds+
w t

t−ω2
yT(s)(

N∑
η=1

ω2πιη(h)×

O2(η)y(s)ds−R2)y(s)ds (72)

ℑ(ω(t), ω̇(t)) < 0
From  Formulas  (30)–(34)  and  the  Schur’s  complement

lemma,  it  can  be  deduced  that ,  similar  to
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Ξ = ℑ(ω(t), ω̇(t)) and ν1 =min
ι∈N
{λmin (−Ξ)}

t ⩾ ω2 λmin

Ref. [32],  define 
for any  , where  is the least eigenvalue
 

LV(y(t),m(t)) ⩽ −ν1∥ζ(t)∥2 ⩽ −ν1∥y(t)∥2 (73)
and owing to the Dynkin’s formula
 

ε {V(y(t),m(t)) | (δ,m0)} ⩽ ε {V (δ,m0)}−

ν1ε
{w t

0
∥y(s)∥2ds

}
(74)

t ⩾ 0thus, based on Eq. (43) for any , Formula (75) is obtained
 

ε{V(y(t),m(t))} ⩾ ν2ε
{
∥y(t)∥2

}
(75)

ν2 =min
ι∈N
{λmin(−P(ι))} > 0where .  Also  from  Formulas  (74)

and (75), Formula (76) can be acquired
 

ε
{
∥y(t)∥2

}
⩽ b2V(y(t),m(t))−b1ε

{w t

0
∥y(s)∥2ds

}
,

b1 = ν1ν
−1
2 , b2 = ν

−1
2 (76)

Applying the Gronwell-Bellman lemma gives
 

ε
{
∥y(t)∥2

}
⩽ b2V(x(t),m(t))e−b1t (77)

next
 

ε
{w t

0
∥y(s)∥2ds | (δ,m0)

}
⩽ −b−1

1 b2V(y(t),m(t))×

(e−b1t −1) (78)
t→∞Letting , we realize

 

lim
t→∞
ε
{w t

0
∥y(s)∥2ds | (δ,m0)

}
⩽ b−1

1 b2V(y(t),m(t)) (79)

c > 0then, there is always a scalar , we get
 

lim
t→∞
ε
{w t

0
∥y(s)∥2ds | (δ,m0)

}
⩽ c sup

s∈[−ω2,0]
∥δ(s)∥2 (80)

thus,  in  view  of  Definition  2,  Eq.  (5)  is  stochastic  stable.
Theorem 1 is proved.　　　　　　　　　　　　　　　　■

u(t) , 0When , a state-feedback control law is designed
 

u(t) = −K(m(t))y(t) (81)
K(m(t))where  is the matrix to be determined, and Eq. (5) can

be revised as Eq. (82)
 

ẏ(t) = −(D(m(t))+K(m(t)))y(t)+A(m(t))k(y(t))+
B(m(t))k(y(t−ω(t))) (82)

Similar to Theorem 1, we can get that the closed-loop sMJS
in  Eq.  (82)  is  stochastically  stable,  and  the  proof  process  is
simple and the same as that of Theorem 1.  

IV.  Illustrative Example

Consider  the  closed-loop  sMJS  in  Eq.  (82)  with  following
parameters
 

D1 =
[
−1.6 −1.0
−1.0 −1.3

]
, D2 =

[
−0.4036 −1.0000
−1.0000 −1.5036

]
,

A1 =
[

1.5 0.0
0.0 −1.0

]
, A2 =

[
1.50 0.23
0.45 −1.12

]
,

B1 =
[
−1.0 0.5
−0.5 −1.0

]
, B2 =

[
−1.10 0.25
−0.50 −0.10

]
,

 

ω(t) = 1.36+0.7sin(t), k1(µ) = k2(µ) = tanh(µ).
[−0.1280,2.6064;1.3026,it  is  assumed  that  TR  matrix  is 

−0.0640] y(t) = [−4,4]T. Moreover, we set initial condition as .
Figure  1 shows  the  system  modes  evolution  of  the  semi-
Markovian  jump  process.  It  can  be  clearly  seen  from Fig.  1,
the  system  modes  jump  between  mode  1  and  mode  2
randomly. Figures  2 and 3 are  the  orbits  of  Eq.  (82)  even
though  the  system  modes  are  jumping.  Especially, Fig.  3
utilizes  different  initial  values  to  further  validate  the
effectiveness  of  the  designed  method.  In Fig.  4,  the  control
law  curves  of  Eq.  (82)  are  drawn.  Hence,  from  the
aforementioned  analyses,  Eq.  (82)  with  semi-Markov  jump
parameters is stochastically stable in mean-square sense.
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Figure 1 Mode evolution of sMJS.
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Figure 2 Trajectory of sMJS.
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Figure 3 Trajectory of sMJS with different initial values.
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Figure 4 Control input.
   

V.  Conclusion

This  paper  analyzed the stability  of  sMJS neural  networks.
By using the Lyapunov stability theory, the Wirtinger integral
inequality,  inverted  convex  combination  technology,  and
generalized  double  integral  inequality,  a  unique  criterion
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based  on  linear  matrix  inequalities  is  designed  to  produce
neural network to achieve stochastic stability in mean square.
In  the  future,  it  merits  further  probe  on  the  issue  of  other
control schemes, such as event-triggered control,  event-based
control, etc.  

Acknowledgment

This work was supported in part by the National Key R&D
Program  of  China  (No.  2018YFA0702200),  the  National
Natural  Science  Foundation  of  China  (No.  61627809),  the
Liaoning  Revitalization  Talents  Program  (No.  XLYC1801
005),  and  the  Natural  Science  Foundation  of  Liaoning
Province of China (No. 2022JH25/10100008).

References 

 J. Nilsson, B. Bernhardsson, and B. Wittenmark, Stochastic analysis and
control  of  real-time  systems  with  random  time  delays, Automatica
(Oxford), 1998, 34(1), 57–64.

[1]

 R.  Krtolica,  Ü.  Özgüner,  and  H.  Chan,  H.  Göktas,  J.  Winkelman,  and
M.  Liubakka,  Stability  of  linear  feedback  systems  with  random
communication delays, Int. J. Control, 1994, 59(4), 925–953.

[2]

 S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability.
London, UK: Springer, 2012.

[3]

 Z.  G.  Wu,  P.  Shi,  Z.  Shu,  H.  Y.  Su,  and  R.  Q.  Lu,  Passivity-based
asynchronous  control  for  Markov  jump  systems, IEEE  Trans.  Autom.
Control, 2017, 62(4), 2020–2025.

[4]

 D.  P.  De  Farias,  J.  C.  Geromel,  J.  B.  R.  Do  Val,  and  O.  L.  V.  Costa,
Output feedback control of Markov jump linear systems in continuous-
time, IEEE Trans. Autom. Control, 2000, 45(5), 944–949.

[5]

 L.  Q.  Zhang,  Y.  Shi,  T.  W.  Chen,  and  B.  Huang,  A  new  method  for
stabilization  of  networked  control  systems  with  random  delays, IEEE
Trans. Autom. Control, 2005, 50(8), 1177–1181.

[6]

 Z. Wang, Y. Yuan, and H. J. Yang, Adaptive fuzzy tracking control for
strict-feedback  Markov  jumping  nonlinear  systems  with  actuator
failures  and  unmodeled  dynamics, IEEE  Trans.  Cybern.,  2020,  50(1),
126–139.

[7]

 R. Chang, Y. M. Fang, L. Liu, and K. S. Kang, Prescribed performance
adaptive  neural  tracking  control  for  strict-feedback  Markovian  jump
nonlinear systems with time-varying delay, Int. J. Control, Autom. Syst.,
2017, 15(3), 1020–1031.

[8]

 Q. Y. Fan, G. H. Yang, and D. Ye, Adaptive tracking control for a class
of Markovian jump systems with time-varying delay and actuator faults,
J. Franklin Inst., 2015, 352(5), 1979–2001.

[9]

 J.  G. Cheng and F. Liu,  Feedback predictive control based on periodic
invariant set for Markov jump systems, Circuits, Syst., Signal Process.,
2015, 34(8), 2681–2693.

[10]

 S.  Wang,  Z.  G.  Wu,  and  Y.  Y.  Tao,  Asynchronous  H∞ control  for
continuous-time hidden Markov jump systems with actuator saturation,
IEEE Trans. Cybern., 2023, 53(11), 7095–7104.

[11]

 Y.  Z.  Zhu,  N.  Xu,  X.  K.  Chen,  and  W.  X.  Zheng,  H∞ control  for
continuous-time Markov jump nonlinear systems with piecewise-affine
approximation, Automatica, 2022, 141, 110300.

[12]

 X.  T.  Wu,  P.  Shi,  Y.  Tang,  S.  Mao,  and  F.  Qian,  Stability  analysis  of
semi-Markov  jump  stochastic  nonlinear  systems, IEEE  Trans.  Autom.
Control, 2022, 67(4), 2084–2091.

[13]

 T.  Wu,  L.  L.  Xiong,  J.  Cheng,  and  X.  Q.  Xie,  New  results  on
stabilization analysis for fuzzy semi-Markov jump chaotic systems with
state quantized sampled-data controller, Inf. Sci., 2020, 521, 231–250.

[14]

 Y. Gao, F. J.  Gu, C. Cattani,  and W. Q. Song, Exponential  stability of
leakage  delay  and  semi-Markovian  jump  for  neutral-type  neural
network, IEEE Access, 2020, 8, 104198–104206.

[15]

 C. D. Zheng, Z. D. Zhang, Y. Lu, and H. G. Zhang, Stochastic stability
for  delayed  semi-Markovian  genetic  regulatory  networks  with  partly
unknown transition rates by employing new integral inequalities, Neural
Comput. Appl., 2022, 34(16), 13649–13666.

[16]

 W.  H.  Qi,  X.  W.  Gao,  C.  K.  Ahn,  J.  D.  Cao,  and  J.  Cheng,  Fuzzy
integral  sliding-mode  control  for  nonlinear  semi-Markovian  switching
systems with application, IEEE Trans. Syst., Man, Cybern.: Syst., 2022,
52(3), 1674–1683.

[17]

 B. P. Jiang and C. C. Gao, Decentralized adaptive sliding mode control
of large-scale semi-Markovian jump interconnected systems with dead-
zone input, IEEE Trans. Autom. Control, 2022, 67(3), 1521–1528.

[18]

 Y. D. Ji and S. W. Zheng, Distributed mode-dependent event-triggered
passive filtering for flexible manipulator with semi-Markov parameters,
Sensors, 2021, 21(6), 2058.

[19]

 W.  H.  Qi,  G.  D.  Zong,  and  H.  R.  Karimi,  Sliding  mode  control  for
nonlinear  stochastic  singular  semi-Markov jump systems, IEEE Trans.
Autom. Control, 2020, 65(1), 361–368.

[20]

 Z.  S.  Wang,  S.  B.  Ding,  Q.  H.  Shan,  and  H.  G.  Zhang,  Stability  of
recurrent neural networks with time-varying delay via flexible terminal
method, IEEE  Trans.  Neural  Netw.  Learn.  Syst.,  2017,  28(10),
2456–2463.

[21]

 J.  Wang  and  H.  Shen,  Passivity-based  fault-tolerant  synchronization
control  of  chaotic  neural  networks  against  actuator  faults  using  the
semi-Markov  jump  model  approach, Neurocomputing,  2014,  143,
51–56.

[22]

 S. Geirhofer, L. Tong, and B. M. Sadler, Cognitive radios for dynamic
spectrum  access—Dynamic  spectrum  access  in  the  time  domain:
Modeling  and  exploiting  white  space, IEEE  Commun.  Mag.,  2007,
45(5), 66–72.

[23]

 Y. L. Wei, J. H. Park, H. R. Karimi, Y. C. Tian, and H. Jung, Improved
stability  and  stabilization  results  for  stochastic  synchronization  of
continuous-time  semi-Markovian  jump  neural  networks  with  time-
varying  delay, IEEE  Trans.  Neural  Netw.  Learn.  Syst.,  2018,  29(6),
2488–2501.

[24]

 P.  G.  Park,  J.  W.  Ko,  and  C.  Jeong,  Reciprocally  convex  approach  to
stability  of  systems  with  time-varying  delays, Automatica (Oxford),
2011, 47(1), 235–238.

[25]

 Z.  S.  Wang,  S.  B.  Ding,  Z.  J.  Huang,  and  H.  G.  Huang,  Exponential
stability and stabilization of delayed memristive neural networks based
on  quadratic  convex  combination  method, IEEE  Trans.  Neural  Netw.
Learn. Syst., 2016, 27(11), 2337–2350.

[26]

 X.  M.  Zhang  and  Q.  L.  Han,  Global  asymptotic  stability  analysis  for
delayed  neural  networks  using  a  matrix-based  quadratic  convex
approach, Neural Netw., 2014, 54, 57–69.

[27]

 Z.  B.  Wang  and  H.  Q.  Wu,  Global  synchronization  in  fixed  time  for
semi-Markovian  switching  complex  dynamical  networks  with  hybrid
couplings  and  time-varying  delays, Nonlinear  Dyn.,  2019,  95(3),
2031–2062.

[28]

 C.  D.  Zheng,  Z.  P.  Wei,  and  Z.  S.  Wang,  Robustly  adaptive
synchronization  for  stochastic  Markovian  neural  networks  of  neutral
type  with  mixed  mode-dependent  delays, Neurocomputing,  2016,  171,
1254–1264.

[29]

 A.  Seuret  and  F.  Gouaisbaut,  Wirtinger-based  integral  inequality:
Application  to  time-delay  systems, Automatica,  2013,  49(9),
2860–2866.

[30]

 Y.  He,  G.  P.  Liu,  D.  Rees,  and  M.  Wu,  Stability  analysis  for  neural
networks  with  time-varying  interval  delay, IEEE Trans.  Neural  Netw.,
2007, 18(6), 1850–1854.

[31]

 F. B. Li,  L. G. Wu, and P. Shi,  Stochastic stability of semi-Markovian
jump  systems  with  mode-dependent  delays, Int.  J.  Robust  Nonlinear
Control, 2014, 24(18), 3317–3330.

[32]

ZHANG et al.: ANALYZING THE STOCHASTIC STABILITY OF NEURAL NETWORKS WITH SEMI-MARKOV JUMP PARAMETERS 19 



Lulu  Zhang received  the  BS  degree  in  software
engineering  from  Liaoning  Technical  University,
China,  in  2016,  and  the  MS  degree  in  mathematics
from  Dalian  Jiaotong  University,  Dalian,  China,  in
2022.  She  is  currently  pursuing  the  PhD  degree  in
control  theory  and  control  engineering  at
Northeastern  University,  Shenyang,  China.  Her
research  interests  include  approximate  dynamic
programming  and  stability  of  recurrent  neural
networks.

Jiayue  Sun received  the  PhD  degree  in  power
electronics  and  power  transmission  from
Northeastern  University,  Shenyang,  China,  in  2021.
She is currently a postdoctoral fellow at Northeastern
University, China, a member of Chinese Academy of
Engineering,  Beijing,  China,  and  the  life  fellow  at
State  Key Laboratory of  Synthetical  Automation for
Process  Industries,  Northeastern  University,  China.
She  is  also  a  teacher  at  Northeastern  University,
China.  She  is  a  member  of  Chinese  Association  of

Automation  (CAA)  and  Chinese  Association  for  Artificial  Intelligence
(CAAI).  She  works  as  the  Intelligent  Adaptive  Learning  Committees
secretary  of  CAAI.  She  has  authored  or  coauthored  30  peer  reviewed
international  journal  articles.  Her  research  interests  include  optimization  of
complex  industrial  processes,  intelligent  adaptive  learning,  and  distributed
control of multi-agent systems.

Huaguang Zhang received the  BS and MS degrees
in  control  engineering  from  Northeast  Dianli
University,  Jilin,  China,  in  1982  and  1985,
respectively,  and  the  PhD  degree  in  thermal  power
engineering  and  automation  from  Southeast
University,  Nanjing,  China,  in  1991.  He  joined
Department  of  Automatic  Control,  Northeastern
University, China, in 1992, as a postdoctoral fellow,
for two years, where he has been a professor and the
head  of  Institute  of  Electric  Automation,  College  of

Information  Science  and  Engineering,  Northeastern  University,  China,  since
1994.  He  has  authored  or  coauthored  over  200  journals  and  conference
papers, four monographs, and coinvented 20 patents. He was a recipient of the
Outstanding  Youth  Science  Foundation  Award  from  the  National  Natural
Science  Foundation Committee  of  China  in  2003,  the  IEEE Transactions  on
Neural  Networks  2012  Outstanding  Paper  Award,  and  the  Andrew  P.  Sage
Best  Transactions  Paper  Award  2015.  He  was  named  the  Cheung  Kong
Scholar  by  Education  Ministry  of  China  in  2005.  He  is  the  E-letter  chair  of
the  IEEE  Computational  Intelligence  Society  and  the  former  chair  of  the
Adaptive  Dynamic  Programming  and  Reinforcement  Learning  Technical
Committee of IEEE Computational Intelligence Society. He was an associate
editor  of IEEE Transactions  on Fuzzy  Systems from 2008 to  2013.  He is  an
associate  editor  of Automatica, IEEE Transactions  on  Neural  Networks  and
Learning Systems, IEEE Transactions  on Cybernetics,  and Neurocomputing.
He  is  also  a  fellow  of  IEEE.  His  research  interests  include  fuzzy  control,
stochastic  system  control,  neural  network  based  control,  nonlinear  control,
and their applications.

 20 THE INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 29, NO. 1, MARCH 2024


	I Introduction
	II Problem Description
	III Main Result
	IV Illustrative Example
	V Conclusion
	Acknowledgment
	References

