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   Abstract—With  the  development  of  society  and  the
improvement  of  people’s  living  standard,  diabetes  has  gradually
become one  of  the  world  public  health  problems that  endangers
human life safety and affects the development of global economy.
Type 1 diabetes is a chronic metabolic disorder that prevents the
pancreas from producing insulin and requires lifelong treatment
with daily insulin injections to prevent high blood sugar. The lack
of  insulin  leads  to  the  continuous  high  level  of  blood  sugar  in
patients.  The  most  important  thing  for  patients  is  to  monitor
blood  sugar  changes  and  control  blood  sugar  within  the  normal
range. In this paper, a systematic literature search is carried out
to  study  these  two  aspects,  and  key  information  such  as  the
learning  model  adopted  in  the  literature,  the  main  results,  the
development  of  relevant  technologies,  and  the  limitations  are
summarized.  From  the  perspective  of  glucose-insulin  prediction
model, due to the complex structure of physiological model, many
parameters are difficult to identify, most of the modeling methods
are  data-driven.  There  is  a  great  room  for  improvement  in  the
research on how to mine and utilize existing models to effectively
establish accurate glucose prediction models for different objects.
From  the  perspective  of  control  theory,  after  insulin  injection,
there  is  a  certain  delay  in  the  reduction  of  blood  glucose
concentration,  and  the  onset  time  is  different  depending  on  the
injection  site.  The  rapid  development  of  deep  learning  and  the
increase in available data offer the possibility of addressing these
challenges in the near future. When designing closed-loop glucose
algorithms, we consider using a variety of approaches to establish
a personalized glucose control algorithm for each diabetic patient.
    Index Terms—Blood  glucose  prediction, data-driven, artificial
pancreas, control algorithm
  

I.  Introduction

Diabetes  mellitus  is  a  chronic  disease  caused  mainly  by
abnormal  blood  glucose  (BG)  levels  due  to  disorders  of
glucose metabolism, which may be above or below the normal
range: 70–140 mg/dL [1]. There are three main types: firstly,
type 1 diabetes mellitus (T1DM) due to the lack of pancreas to
produce  adequate  amounts  of  insulin;  secondly,  type  2
diabetes  mellitus  (T2DM)  due  to  insulin  resistance  and
relative  insulin  deficiency;  and  also  gestational  diabetes
mellitus (GDM) in which the placenta produces high levels of
hormones  that  impair  the  action  of  insulin  during  pregnancy
[2]. According to the International Diabetes Federation (IDF),
the  number  of  adults  with  diabetes  has  reached  537  million

worldwide  in  2021,  and  the  number  of  diabetes  cases  is
expected  to  increase  to  783  million  by  2025.  Diabetes  is
responsible  for  nearly  one  trillion  dollars  in  healthcare
expenditures  worldwide,  and  approximately  6.7  million
people died from diabetes or  diabetes complications in 2021.
This  number  is  expected  to  reach  578  million  by  2030  and
700  million  by  2045.  Diabetes  treatment  aims  to  maintain
blood  glucose  levels  within  normal  limits [3].  Otherwise,
people with diabetes may face a higher risk of complications,
including  vascular  damage,  cardiovascular  disease,  kidney
damage, coma, and even death [4]. Fortunately, complications
are  very  rare  in  patients  who  manage  their  blood  glucose
levels effectively [5]. China, which has the largest number of
diabetic  patients  in  the  world,  faces  enormous  challenges  in
preventing  and  controlling  diabetes.  Thus,  it  is  important  to
research  and  develop  advanced  treatment  techniques  suitable
for  diabetic  patients.  The  proposed  artificial  pancreas  (AP)
brings  a  whole  new  way  of  thinking  for  intensive  insulin
therapy.  The  artificial  pancreas  secretes  insulin  through  an
electronic  device  instead  of  the  human  pancreas.  It  does  not
require  user  participation  in  control  and  can  control  insulin
infusion  according  to  blood  glucose  levels  through  a  fully
closed-loop  control  strategy  to  mimic  the  insulin  secretion
pattern  of  the  normal  human  pancreas,  thus  achieving
automatic  real-time  regulation  of  blood  glucose  levels.  The
device can output insulin in real-time through the changes of
the patient’s blood glucose to keep the patient’s blood glucose
level  under  normal  control.  For  type  1  diabetic  patients,  the
artificial  pancreas  can  provide  more  accurate  control  of  their
blood  glucose,  reduce  human  error  intervention,  and
effectively  improve  the  treatment  effect  of  diabetes.  The
artificial  pancreas  consists  of  three  main  components:
continuous  glucose  monitiring  system  (CGMS),  control
algorithm,  and  insulin  pump.  The  working  principle  of  the
artificial  pancreas  is:  Firstly,  the  patient’s  blood  glucose  is
monitored  in  real-time  by  the  blood  glucose  monitoring
system, then the insulin output rate is calculated according to
the current monitored blood glucose value and the closed-loop
control  algorithm,  and  finally  the  insulin  is  outputted  by  the
insulin  pump  to  control  the  patient’s  blood  glucose.  Its
advantages  not  only  liberate  patients  from  the  daily
supervision of blood glucose, but also avoid the occurrence of
high and low blood glucose events caused by human operation
faults.  The  most  important  thing  for  patients  with  diabetes,
whose  blood  glucose  is  constantly  high  due  to  insulin
deficiency,  is  to  monitor  the  changes  in  blood  glucose  and
control it within the normal range.  
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II.  Blood Glucose Prediction

The dynamic characteristics of human blood glucose-insulin
interactions are a more complex biochemical reaction, and it is
difficult  for  mathematical  models  to  accurately  describe  the
dynamic  characteristics  between  them.  But  more  and  more
scientists  and  research  scholars  have  done  a  lot  of  research
works  in  this  area,  which  has  led  to  a  good  development  of
blood  glucose  models,  and  to  a  certain  extent  has  promoted
the development of high and low blood glucose alarms, blood
glucose  prediction,  and  artificial  pancreatic  closed-loop
control  systems.  Blood  glucose  prediction  can  not  only  help
patients  to  regulate  blood  glucose,  but  also  avoid  the
occurrence  of  hyperglycemia  and  hypoglycemia [6].
Prediction  models  are  divided  into  three  main  categories:
physiological model, data-driven model, and hybrid model, as
shown in Fig. 1.  

A.  Physiological Model
Before  physiological  models  can  be  used  to  model  the

metabolism of insulin and glucose, some knowledge of insulin
and  glucose  is  required.  The  physiological  models  use
chamber  models  to  simulate  blood  glucose  metabolism,
thereby  enabling  the  understanding  and  control  of  the
physiological  processes  of  glucose. Figure  2 below  shows  a
schematic  diagram  of  a  physiological  model  in  which  blood
glucose  concentration,  glucose  events,  or  risk  are  predicted
using  a  complement  of  submodels  including  subcutaneous
insulin  uptake,  carbohydrate  digestion  and  absorption,  and
insulin  action [7].  The  biggest  hole  in  these  methods  is  that
there  are  multiple  physiological  parameters  in  the model  that
can be adjusted, and it  is these parameters that are applied to

make glycemic predictions. This generally includes estimation
of  carbohydrate  intake,  external  insulin  therapy,  and  several
other  variables  related  to  physical  activity.  These  parameters
can  be  adjusted  by  recognition  techniques,  machine  learning
techniques,  or  overall  values.  Although  some  models  are
minimalist,  it  is  difficult  to identify a specific model because
the models often contain variables and parameters that are not
easily identified and adjusted. According to their complexity,
they can be divided into two types: The first type of model is
called minimal model, which allows glucose metabolism with
insulin  by  simple  formulas  and  identifiable  parameters  and
requires  only  the  most  basic  identifiable  parameters  and
nonlinear equations; the second type is called the maximal or
integrated  model,  which  contains  all  the  knowledge  of  the
physiological  system  and  can  simulate  or  reproduce  the
metabolism  of  a  diabetic  patient.  Thus,  it  can  be
experimentally evaluated for control and treatment. However,
some  studies  do  not  have  clear  guidelines  on  how to  choose
the  appropriate  method  and  appropriate  model  by  comparing
the postprandial insulin effect with the differences in glucose
kinetic  models,  such  as  insulin  sensitivity,  basal  insulin,  and
uncertainty  in  dietary  intake.  Over  the  last  few  decades,
several  scholars  have  used  experimental  data  on  glucose
production  and  utilization,  insulin,  and  dietary  absorption  to
model  insulin  action and glucose kinetics.  Many of  these are
partitioned models,  where some of  these processes cannot  be
directly  metricized,  and  they  appear  to  be  inaccessible  to  the
system. In this way, the inaccessible parts  are represented by
several  interconnected  compartments.  Currently,  the  most
popular  physiological  models  in  insulin  action  and  glucose
kinetic  systems  are  the  Dalla-Man  model,  the  Bergman
minimal model,  and the Hovorka model.  The following are a
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Figure 1 Classification of blood glucose prediction methods.

 

Carbohydrate

Training

External insulin infusion

Stomach digestion
and absorption

Training the model

Subcutaneous insulin
absorption model

Insulin action
and glucose

kinetic
model

BG (t)

 
Figure 2 Schematic diagram of the physiological model.
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few  commonly  used  physiological  models  that  have  been
experimented  by  a  large  number  of  scholars  and  physicians
and have proven their validity. More precisely, the Dalla-Man
model  consists  of  a  glucose and an insulin  subsystem, which
is  achieved  by  regulating  the  use  of  glucose  and  the  insulin
produced  in  the  body.  The  difference  is  that  the  minimal
model  uses  a  three-compartment  model  that  further
characterizes plasma insulin concentration,  distal  insulin,  and
plasma glucose to obtain Bergman’s nonlinear minimal model
extended  response  states,  evaluates  the  observability  of  state
and external inputs, and identifies the model [8]. Based on this
model,  an  improved  model  of  exercise,  diet,  and  insulin
intervention  mechanisms  was  proposed  and  was  good  in
explaining  glucose  kinetics [9].  For  most  of  the  estimated
parameters,  the  individualized  point  estimates  and  their
confidence intervals were found to be within the physiological
range  of  the  modeling.  The  Hovorka  model  uses  two
compartments  to  represent  the  dynamic  process  of  glucose
separately  and  considers  insulin  action  separately  from  its
final  effect  on  blood  glucose.  These  input  variables
incorporate factors external to insulin as well as nutrient levels
over  time.  Laguna  et  al. [10] proposed  a  new  approach  to
identification  based  on  Hovorka  interval  analysis,  in  which
variability  and  model  imprecision  are  represented  by  the
interval  model  as  parameter  uncertainty.  The  postprandial
response,  uncertainty  due  to  physiological  variability,  input
error,  insulin  input  rate,  and  nutrient  composition  in  the  diet
were  all  predicted  better  using  the  interval  model  for  multi-
objective  optimization [11].  Monotonicity  analysis  of  the
model  states  and  parameters  was  performed  by  considering
uncertainties under all parameters and initial conditions.  

B.  Data-Driven
The  data-driven  model  relies  only  on  continuous  glucose

monitor (CGM) data and requires additional signals to model
the  patient’s  physiological  response  when  physiological
parameters  are  not  included,  as  shown  in  the  schematic
diagram  in Fig.  3.  The  most  common  examples  of  this
approach  are  neural  network  (NN)  and  augmented  reality
(AR)  model,  with  alternatives  being  physiological  models  of
glucose  digestion  and  absorption,  a  second  model  of  insulin
absorption,  and  a  third  model  of  exercise.  Data-driven
modeling  refers  to  a  model  that  uses  historical  data  from
diabetic  patients  to  identify  blood  glucose  and  predict  future
blood  glucose  values  from  blood  glucose  data,  insulin  input
values,  dietary  inputs,  and  other  variables  that  may  affect
changes  in  blood  glucose [12, 13].  Since  the  data-driven
approach  does  not  require  much  complex  physiological
knowledge, blood glucose prediction models can be built in a
shorter  period  of  time  and  can  be  modeled  using  only
collected  historical  data,  while  being  easy  to  operate  and
implement.  Therefore,  data-driven  approach  is  used  in  many
times  when  modeling  patients.  The  accumulation  of  a  large
number  of  patient  histories  has  laid  the  foundation  for  the
introduction  of  machine  learning  and  its  application  in  the
treatment of diabetes. The ability of machine learning to solve
complex tasks under dynamic conditions and knowledge will
help it to be better applied to diabetes research. Deep learning
is  a  promising  machine  learning  method  with  promising

applications  in  high  dimensional  data [13].  With  the
development of deep learning techniques in the field of image
recognition and speech recognition,  breakthroughs have been
made [14, 15]. Similarly, deep learning has been used to good
effect  in  blood  glucose  prediction [16].  Zhu  et  al. [17]
proposed  a  convolutional  neural  network  (CNN)  model  to
predict blood glucose levels over a 30 min period, which also
incorporates  CGM,  food  intake,  and  insulin  regulation.  Li  et
al. [18] used  a  deep  learning  framework  for  long  short  term
memory (LSTM) to predict the overall trend of future changes
in  BG  levels.  Since  the  support  of  such  models  is  based  on
machine  learning,  there  are  many current  prediction  methods
such  as:  time  series  models,  regularized  learning,  robust
filters,  random  forest  (RF),  fuzzy  logic  models,  Kalman
filters,  Gaussian  mixture  models  (GMMs),  reinforcement
learning, support vector models,  and artificial neural network
(ANN)  models.  Several  representative  models  are  described
below.
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Figure 3 Block diagram of data-driven principle.
   
a.  Artificial Neural Network

An  artificial  neural  network  is  a  computational  model
consisting  of  different  processing  units,  i.e.,  neurons,  and
being  connected  by  scaling  of  weights.  Network  topologies
can  take  many  forms,  but  can  generally  be  classified  as
recurrent/feedback  networks  (Hopfield  networks  and
Kohonen’s self-organizing mapping (SOM)) and feedforward
networks.  Recursive  or  feedback  network  topologies  contain
at  least  one  feedback  loop [19].  Feedforward  networks
containing  connections  between  neurons  that  have  only  one
direction  (forward)  from  pre  to  post  are  the  most  commonly
used  topology.  These  two  network  topologies  have  been
successfully  applied  to  model  and  predict  blood  glucose  in
type 1 diabetic patients. Recurrent or feedback networks have
been  used  in  blood  glucose  prediction:  It  includes  self-
organizing  mappings,  autoregressive  neural  networks,  and
recurrent  neural  networks.  Allam  et  al. [20] trained  two
feedback loops through a complete multilevel network using a
real-time  recursive  algorithm  forced  by  a  teacher.  Pérez-
Gandía  et  al. [21] compared  and  analyzed  four  types  of
modeling  for  blood  glucose  dynamics  machine  learning
techniques:  Feedforward  neural  networks  (FNNs)  are  trained
by backward propagation algorithms, self-organizing mapping
is  implemented  by  vector  quantization,  and  neuro-fuzzy
networks  are  implemented  with  wavelets  as  the  initiating
function as well as linear regression models (LRMs). Pappada
et  al. [22] and  Pappada  and  Cameron [23] trained
autoregressive  neural  networks  by  means  of  the  extended
Kalman  filter  algorithm  to  train  autoregressive  neural
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networks, called neural network autoregressive external input.
In  terms  of  feedforward  networks,  Ahmed  and  Serener [24],
Zarkogianni et al. [25], and Mhaskar et al. [26] used the back-
propagation  Levenberg-Marquardt  optimization  training
algorithm to develop data from CGM to propose feedforward
neural  networks.  Georga  et  al. [27] developed  a  seven-layer
neuro-fuzzy  neural  network  with  wavelets  as  the  activation
function and Gaussian function as the affiliation function, and
used  a  gradient  based  adaptive  learning  rate  for  training.
Daskalaki et al. [28] and Alanis et al. [29] proposed a time lag
forward  neural  network  which  is  trained  by  the  back-
propagation  gradient  descent  algorithm  to  store  the  previous
data  values  into  the  network.  Ruiz-Velázquez  et  al. [30]
proposed  a  function  approximation  using  diffusion
polynomials on data defined stream forms, a semi-supervised
deep  learning  neural  network.  Campbell  and  Ying [31]
investigated  the  applicability  of  extreme  learning  machines
(ELMs),  especially  online  sequential  extreme  learning
machine  and  online  sequential  extreme  learning  machine-
kernel  in  the  training  of  single  hidden  layer  feedforward
neural  networks.  Recursive  or  feedback  networks,  including
recurrent  neural  networks,  autoregressive  neural  networks,
and  self-organizing  mappings,  have  been  used  in  blood
glucose prediction. For example, Allam et al. [20] used a fully
connected  multilevel  network  to  train  two  feedback  loops
using a real-time recursive algorithm forced by the teacher. In
addition  to  this,  Pérez-Gandía  et  al. [21] compared  and
analyzed  four  machine  learning  techniques  for  modeling
blood  glucose  dynamics:  Neuro-fuzzy  networks  and  linear
regression  models  are  based  on  wavelets  as  activation
functions,  SOM  is  implemented  by  vector  quantization,  and
feedforward neural  networks are trained by back-propagation
algorithms.  

b.  Support Vector Machines (SVMs), Kernel Function, and
Gaussian Process Regression

Support  vector  machines  have  been  widely  used  in  pattern
recognition and identification, classification or categorization,
and regression and prediction [31].  Support vector regression
(SVR) is one of the most widely used SVMs in blood glucose
prediction and modeling. In this context, Reymann et al. [32]
investigated the feasibility of using SVR mobile platform for
blood  glucose  prediction  using  radial  basis  function  as  a

kernel. In addition, Li and Fernando [33] attempted to use the
collected  patient  data  to  obtain  similarities  between  patients,
thus  using  the  smartphone of  SVR to  collect  data  to  develop
personalized  blood  glucose  prediction  models.  Georga  et  al.
[34] proposed  predictors  based  on  SVR  for  random  forests
and extended the ReliefF algorithm for  multi-class  scenarios,
investigating  the  potential  performance  improvements  of
using feature ranking algorithms. Naumova et al. developed a
new  approach  to  fully  adaptive  regularization  learning
(FARL)  using  meta-learning  to  select  kernels  and  positive
regular  parameters  from  a  rule-based  learning  algorithm  for
kernels [35].  Gaussian  process  regression  is  a  very  practical
non-parametric  regression  tool  that  has  been  widely  used  in
vital sign “early warning systems”, disease prediction, patient
physiological  monitoring,  biomarker  detection  in  microarray
gene  expression  data,  etc.  Tomczak  investigated  the
application  of  classification-based  inputs  in  blood  glucose
prediction [36].  Applications  were  investigated.  The  inputs
include  data,  time,  code,  and  the  level  of  blood  glucose.
Classification codes were used to describe measures of insulin
dose,  dietary  intake,  exercise,  and  preprandial  glucose
measurement, and the classification inputs were analyzed.  

c.  Random Forest
Stochastic  decision  forest  is  an  integrated  learning  method

that  uses  decision  trees  for  classification  and  regression  to
generate  patterns  of  classes  or  predicted  averages.  In  this
context,  Xao  et  al. [37] evaluated  the  performance
improvement  obtained  by  using  a  combined  approach  of
feature  importance  score  and  sequence  backward  selection
(SBS)  algorithm  in  integrated  learning  to  select  the  optimal
feature representation for prediction of blood glucose based on
random  forest  regression  and  support  vector  regression
techniques.  In  addition,  Georga  et  al. [38] used  a  random
forest  regression  approach  to  predict  BG  from  a  dataset  that
consisted  of  plasma  insulin  concentration,  subcutaneous
glucose  distribution,  digestion  and  absorption  of  dietary
glucose, and daily energy expenditure.  

C.  Hybrid Model
Hybrid  models  are  used  in  the  preprocessing  phase,  as

shown in Fig. 4. Since these models depend to some extent on
the physiological model, and certain physiological parameters
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Figure 4 Hybrid model schematic block diagram.
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must be identified and set. Finally, any of the previous options
can  be  used  for  the  predictive  model  of  the  internal  model
control  algorithm  and  are  therefore  referred  to  as  hybrid
models.

Solutions that mix physiological and data-driven models are
usually  based  on  modules  of  physiological  models  that  can
represent  the  relationship  between  learning  inputs  and  future
outcomes  either  through  classes  (qualitative  approach)  or
through  actual  blood  glucose  continuum  values  (quantitative
approach).  The  general  physiological  models  are  dietary
models and insulin uptake models. The most commonly used
approach  to  model  diet/glucose  uptake  is  the  Dalla-Man  diet
model,  followed  by  the  Lehmann  and  Deutsch  model.
Whenever information about insulin therapy is used as input,
the most commonly used model is the Berger model, followed
by  the  Dalla-Man  model.  Finally,  different  types  of  NNs  are
the most common method for predicting future blood glucose.
The hybrid contains three or  more methods in preprocessing,
feature extraction, and learning to improve performance. Most
of  the  current  blood  glucose  prediction  models  combine
various  machine  learning  techniques  with  physiological
models. In support vector regression, Plis et al. [39] combined
support  vector  regression  with  physiological  models,  which
generated informative  input  features  to  train  SVR models.  In
addition,  Georga  et  al. [40] combined  support  vector
regression  and  chamber  models  to  quantify  the  effects  of
postprandial  intestinal  glucose  absorption,  subcutaneous
insulin  absorption,  and  exercise  on  the  dynamics  of  insulin.
Also,  many  researchers  have  combined  artificial  neural
networks  with  other  methods.  Zecchin  et  al. [41] combined
artificial  neural  networks  with  physiological  models  to
combine  information  from  food  with  CGM  data.  A  jump
neural  network  based  on  a  physiological  model  of  food  and
CGM  data  input  was  studied [42, 43],  and  the  results  were
compared  with  a  previously  studied  ANN [41].  Contreras  et
al. [44] studied a hybrid model using an algorithm for genetic
programming,  as  well  as  a  physiological  model.  Self-
organizing  mapping  techniques  have  also  been  used  in
physiological and hybrid models. Zarkogianni et al. [45] used
a  physiological  model  to  simulate  the  dynamic  process  of
subcutaneous  insulin  and  aspiration  of  glucose  from  the
intestine into the bloodstream into a self-organizing mapping.
Jankovic  et  al. [46] proposed  an  online  adjustable  glucose
prediction  model  with  adaptive  with  both  prediction  and
correction layers. The prediction layer consists of an artificial
neural  network  and  an  autoregressive  model  with  exogenous
inputs  (ARX),  which  incorporates  external  inputs  for
estimation.  Subsequently,  the  output  is  further  refined  by  an
extreme value learning machine in the correction layer.  

D.  Problems Faced by Blood Glucose Prediction Models
The  data-driven  trend  shows  that  a  large  number  of

researchers  are  still  experimenting  with  techniques  such  as
machine learning. At the same time, a single method does not
satisfy  our  requirements  of  prediction  results,  and  the
increasing  combination  of  different  methods  to  improve  the
accuracy  and  possibility  of  predictive  power  opens  up  new
ideas for future research. Any successful prediction algorithm

should  take  into  account  the  patient’s  control  parameters
(blood  glucose,  insulin,  diet,  exercise,  etc.)  as  well  as  the
patient’s  non-control  parameters  (stress,  infection,
medications,  etc.).  In  addition,  any  relevant  contextual
information,  such  as  internal  and  intra-variability  of  patient
lifestyle changes, time of day (day and night), etc., needs to be
considered. Future investigators will have to take into account
longer prediction ranges (providing more corresponding time),
reasonable clinical precision, time delays in improving CGM,
and  long-term  clinical  trials  using  actual  patients  with  large
numbers  of  subjects.  In  addition  to  this,  regions  of
hypoglycemia, normoglycemia, and hyperglycemia should be
given  appropriate  weights  and  penalties.  For  errors  in  some
regions,  predictors  should  be  given  appropriate  weights  and
penalties  to  improve  prediction  accuracy.  An  appropriate
estimation  of  the  relationship  between  dietary  intake  and
physical  exertion  must  also  be  considered  during  the
integration  of  machine  learning.  Stress  and  infection  have  a
significant  impact  on  blood glucose  dynamics  and  prediction
effectiveness.  For  this  purpose,  it  is  necessary  to  monitor
subjects  and  test  and  evaluate  the  impact  of  lifestyle  or
physiological  (infection)  changes  on  prediction  performance.
In  addition,  the  impact  of  various  CGM  devices  on  the
quantitative  performance  and  time  lag  of  the  prediction
algorithm should be explored.  

III.  Current Status of Research on Glycemic
Control and Evaluation

The artificial pancreas has received increasingly widespread
attention  as  one  of  the  most  researched  treatments  for
diabetes.  The  artificial  pancreas  consists  of  three  main
components:  a  continuous  glucose  monitor,  a  control
algorithm, and an insulin pump. Many control strategies have
also  been  proposed  in  the  course  of  research,  and  the
continuous  glucose  monitor  is  a  key  component  of  the
artificial  pancreas,  and  it  follows  the  improvement  of  sensor
technology  and  the  rapid  development  of  computer
technology that continuous glucose monitoring of patients has
become  possible.  The  blood  glucose  monitoring  system
monitors  the  patient’s  blood  glucose  in  real-time,  and  the
control algorithm determines the final amount of insulin to be
injected  into  the  body  to  control  the  patient’s  blood  glucose
values  within  the  normal  range.  The  principle  of  the  control
system to control the body’s blood glucose is shown in Fig. 5.

In previous in-depth exploration of the physiological model
of  human  glucose-insulin  metabolism,  the  blood  glucose
model  has  become  more  and  more  accurate,  and  more
advanced control algorithms were applied to the field of blood
glucose  control,  and  the  block  diagram  of  the  closed-loop
control system is shown in Fig. 6. However, the human blood
glucose  regulation process  is  nonlinear,  and then considering
the safety, reliability, and stability of the control system, many
automatic  control  algorithms  are  applied  to  the  actual  blood
glucose  control  and  achieve  good  results,  in  which
proportional-integral-derivative  (PID)  control  algorithm  was
first  used  for  blood  glucose  control,  and  then  such  as  the
improved  PID  algorithms [47, 48],  neural  network  control
[49],  fuzzy  logic  control [50, 51],  model  predictive  control
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(MPC) [52],  model  iterative  learning  control  (ILC) [53],  and
other control algorithms arose. But these algorithms also have
some other problems that  require us to continuously improve
and refine the algorithm design [54].  

A.  Common Blood Glucose Closed-Loop Control Algorithms
  

a.  Blood Glucose PID Control Algorithm
Proportional-integral-derivative control algorithm has a long

history of development, and its model structure is simple and
robust,  and  is  now  widely  used  in  various  fields.  The  flow
chart  of  its  action  is  shown  in Fig.  7.  When  the  PID  control
algorithm is used for blood glucose control, there is no need to
construct  another  insulin-glucose  model  of  the  patient;  the
PID  algorithm  treats  the  insulin  injection  rate  as  a  weighted
sum  of  the  three  components,  the  proportional,  integral,  and
differential  terms,  and  the  PID  uses  the  three  components
shown in Eq. (1) to simulate the process of insulin secretion in
a normal human [55].
 

IIR = KP(G− r)+KI

w
(G− r)+Kd

∂G
∂t

(1)

IIR Kp KI

Kd
G

Kp(G− r)

Kd
∂G
∂t

where  denotes the calculated insulin infusion rate, , ,
and  are the parameters of controller proportional, integral,
and  differential  yet  to  be  determined,  is  the  measured
glucose,  and r is  the  target  glucose,  respectively. 
represents  the  difference  between  the  actual  output  glucose
value  and  the  set  target  value  for  the  required  fraction  of

insulin injections; while  is related to the rate of glucose
change and can perform rapid regulation of insulin secretion.
Due  to  the  complexity  of  human  blood  glucose  changes,  a
single  PID  parameter  cannot  adapt  to  the  blood  glucose
changes  caused  by  various  external  factors  such  as  exercise
and  diet,  so  the  setting  of  controller  parameters  becomes  a
major  difficulty  in  the  design  process  of  PID  control
algorithm, which may have a certain impact on the algorithm
control  effect [56].  Current  research  based  on  PID  control
parameter adjustment has used neural networks, fuzzy control,
or  greedy  algorithms  to  dynamically  change  the  PID
parameters to adapt to the complex blood glucose changes in
the  human  body.  The  advantage  of  PID  for  blood  glucose
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control is that it is based on no model and even if there is no
model  of  blood  glucose  dynamics  in  diabetic  patients,  the
appropriate  controller  parameters  can  be  set  by  means  of
parameter rectification. And disturbances such as feeding and
exercise  can  be  considered  as  perturbations.  Steil  et  al. [57]
considered  PID  control  algorithms  for  AP  systems  applying
insulin  feedback  to  prevent  controller-induced  hypoglycemia
in an inpatient clinical trial. Garg et al. [58] conducted a safe
and  effective  study  of  an  AP  control  system  for  home
application of PID that automatically increases, decreases, and
pauses  insulin  delivery  in  response  to  continuous  glucose
monitoring.  

b.  Neural Network Control Algorithm
Neural network, also known as artificial neural network, is a

simulation  system  that  mimics  the  structure  and  function  of
biological  neural  networks,  making  it  as  capable  of  learning
and discriminating as the human brain, in order to accomplish
the  processing  of  various  information.  Artificial  neural
network consists  of  many parallel  adjustable weight  neurons,
which  can  find  the  intrinsic  laws  of  these  data  from existing
data,  and  is  suitable  for  dealing  with  some  problems  with
complex intrinsic  relationships  with  nonlinear  characteristics,
or suitable for exploring the patterns of data.  And the insulin
action process  is  a  nonlinear  and strongly perturbed dynamic
process, so that the neural network is suitable for closed-loop
glucose control [59]. Figure 8 below shows the block diagram
of its algorithm, in which TDI stands for time delay isogram.

The  disadvantage  of  neural  network  control  is  that  a  large
amount  of  a  priori  data  are  required to accurately summarize
the  patterns.  And  in  reality,  patients  often  need  to  face  the
interference  of  external  factors  such  as  irregular  eating  and
movement. Therefore, the selection and processing of a priori
data  has  a  large impact  on the control  effect.  And due to  the
strong time lag characteristic of the glucose-insulin system, it
is  easy  to  over-inject  insulin  and  cause  hypoglycemia  to  the
patient,  thus  posing  a  threat  to  the  patient’s  life  safety,  so
neural network algorithms are often used in combination with
other algorithms.  

c.  Blood Glucose Fuzzy Control Algorithm
Fuzzy  control  is  an  intelligent  control  technique  based  on

fuzzy  set  theory,  fuzzy  logic  reasoning,  and  fuzzy  linguistic
variables.  The  algorithm  works  by  coding  expert’s  or
operator’s experience into fuzzy rules and fuzzifying the real-
time  data  collected  by  sensors  and  later  as  fuzzy  rules  for
input to enable fuzzy reasoning and adding its output values to
the  actuators  to  achieve  control  over  the  control  target.  The
transformation performed is represented by Z in the principle
block  diagram  of  blood  glucose  fuzzy  control,  as  shown  in
Fig.  9.  Atlas  et  al.  applied  fuzzy  logic  control  to  a  clinical
object and achieved better control results [60].  

d.  Model Predictive Control Algorithm
MPC is an advanced control algorithm that operates on the

principle of predicting the system’s future dynamic behavior.
This  is  achieved  by  using  predictive  models  such  as  the
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impulse  response  model,  step  response  model,  or  the
controlled  autoregressive  integrated  sliding  average  model.
Based  on  these  predictions,  MPC  solves  for  the  optimal
control  sequence  at  the  current  moment  by  rolling  the
corresponding  cost  function  and  constraints.  The  objective  is
to apply the current control sequence in a way that minimizes
the deviation between the controlled variables and the desired
trajectory [61].  It  is  characterized  by  the  fact  that  the  first
element of the optimal sequence obtained from each solution
is  used  on  the  controlled  object,  and  the  above  steps  are
repeated at the next sampling time, and so on continuously for
rolling  optimization.  MPC  is  a  rather  complex  control
algorithm, and its control flow is shown in Fig. 10. Grosman
et al. [62] proposed the zone-MPC control model by changing
the original objective function into an interval objective. Both
linear  model  predictive  control  (LMPC) [63, 64] and
nonlinear  model  predictive  control  (NMPC) [65, 66] have

been  considered.  Most  of  these  algorithms  are  designed  for
insulin-only  single-hormone,  and  therefore  they  cannot
effectively handle hypoglycemic events in different situations.
The  proposed  algorithm  for  dual  hormone  (insulin  and
glucagon)  control  provides  a  new  idea  for  future  studies.  In
this algorithm, glucagon is the counter-regulatory hormone of
insulin,  which  raises  blood  glucose.  There  are  greater
advantages  in  terms  of  safe  and  tight  glycemic  control,  for
example  during  exercise  or  insulin  over-delivery [67].
Therefore,  researchers  are  now  working  on  a  dual  hormone
system  to  control  both  insulin  and  glucagon [68, 69].
Moscardó  et  al. [70] developed  a  dual  hormone  control
algorithm based  on  proportional  differential  control.  Boiroux
et  al. [71] aimed  to  prevent  hypoglycemic  events  caused  by
insulin over-delivery by employing an linear matrix predictive
control  algorithm,  which  was  based  on  several  different
transfer function models.
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Figure 10 Block diagram of MPC role.
 
  

e.  Iterative Learning Control Algorithm for Blood Glucose
Based  on  the  simple  principle  that  individuals  seek

satisfactory  indicators  to  achieve  desired  behaviors  in
repetitive processes, these scholars have successfully endowed
industrial  robots  with  the  capability  to  perform  trajectory
tracking  tasks  with  high  speed  and  accuracy.  These  robots,
featuring  strongly  coupled  nonlinear  multivariate
characteristics,  are  now  extensively  utilized  in  robotics  and
other  fields.  Its  desired  control  performance  is  achieved  by
continuously  learning  from  past  experience  control
performance,  i.e.,  using  past  information  to  redesign  and
improve  the  control  signal.  Diabetic  patients  are  generally
required  to  have  a  regular  diet,  while  hormone  levels  are
periodic,  the  dynamic  model  then  has  a  certain  degree  of
repetitiveness  and can  be  used  with  iterative  learning control
algorithms.  Wang  et  al.  first  applied  a  model  predictive
control  algorithm  combined  with  iterative  learning  control
algorithm  to  an  artificial  pancreas  .  Also,  to  achieve  stable
control  of  the  closed-loop  system  and  suppression  of
disturbances,  a  Kalman  filter-based  forgetting  factor-based
iterative learning control rate was proposed [72].  

f.  Research in Other Areas
The  performance  of  closed-loop  AP  control  algorithms  is

influenced  by  clinical  parameters,  and  the  study  of  the
effectiveness  and  robustness  of  the  error  of  closed-loop

algorithms in ensuring the safety and efficiency of AP systems
is essential and a direction for future development. Incremona
et  al. [73] introduced  an  integral  error  term  into  the  cost
function to  overcome the  static  error  introduced by the  MPC
algorithm.  Turksoy  et  al. [74] applied  a  novel  food  mass
calculation strategy to an adaptive multivariate AP system and
designed  one  that  can  effectively  prevent  postprandial
hyperglycemia  without  the  need  of  manual  meal  addition
notification.  Hajizadeh  et  al. [75] developed  an  adaptive
glucose model based on CGM data, physiological information
based  control  estimated  mean  arterial  pressure  control,  and
wearable  physiological  measurements  that  can  effectively
address  perturbations  from  unannounced  meals  and  physical
activity.  Meanwhile,  a  PID  control  combined  with  an
expansive  state  observer  was  proposed  as  an  alternative  to
adaptive  glucose  based  models  within  the  framework  of  the
active  disturbance  rejection  control  (ADRC)  approach [76],
which  has  proven  its  effectiveness  in  various  industrial
applications [77–79].  Reenberg  et  al. [80] used  maximum
likelihood estimation (MLE) for a dual hormone AP system to
discriminate  model  parameters,  switching  nonlinear  model
predictive control algorithms were investigated, and a simpler
model was used to extend the glucose regulation model. Cai et
al. [81] proposed an event-triggered mechanism to address the
asymmetric risk of hyperglycemia and hypoglycemia using an
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adaptive interference suppression technique, while introducing
glucose  and  velocity  for  each  hormone  infusion  dependent
parameter adaptive feedback control.  

B.  Problems Facing Closed-Loop Glucose Control
The artificial pancreas has strong specificity, and the current

algorithm  of  closed-loop  control  of  blood  glucose  still  has
some  difficult  problems  to  solve.  From  the  perspective  of
control  theory,  there  is  a  certain  delay  in  the  reduction  of
blood  glucose  concentration  after  insulin  injection,  while  the
onset  of  effect  time  is  different  for  different  injection  sites,
and  blood  glucose-insulin  metabolism  is  a  time  lag  system.
From the perspective of glucose-insulin prediction model, due
to  the  complex  structure  of  physiological  model,  more
parameters  are  difficult  to  identify,  now  mostly  use  data-
driven approach to modeling. There is much room for research
enhancement  on  how  to  tap  into  the  existing  models  and
efficiently  build  accurate  glucose  prediction  models  for
different  subjects.  The  current  blood  glucose  closed-loop
control  algorithm  mainly  weakens  the  characteristics  of
diabetic  patients  themselves  and  builds  their  unified  model,
which is more robust, but the control accuracy for individuals
is  not  high;  furthermore,  it  builds  a  personalized  model  to
achieve precise control for individuals, but the cost of building
the  model  is  high.  In  summary,  when  designing  the  blood
glucose  closed-loop  algorithm,  one  should  consider  using
multiple  deep  learning  algorithms,  modern  control  methods,
etc. to suggest a personalized blood glucose control algorithm
for each diabetic patient.  
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