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Transfer Learning Can Be An Optimizer for Chemical

Process: A Case Study of Ammonia Synthesis
Ming Zhu

Abstract—Artificial intelligence (Al) is of growing in-
terest in chemical industry as numerous published arti-
cles show explicitly. In this work, we propose a transfer
learning method for dynamic optimization on industrial
size plant. Due to several included features, this A1 tool
makes the process optimization in the industrial practice
easy, comfortable, and robust applicable. To demon-
strate the capability of transfer learning, the optimiza-
tion of the industrial ammonia synthesis process is de-
scribed in this work. The achieved optimization results
show that 12% more ammonia can be produced with
22.9% less of hydrogen consumption, 12% less of nitro-
gen supply and Sbar lower of reaction pressure. It will
significantly benefit engineers and project managers
working in the field of clean ammonia synthesis, as it
provides more liexibility for energy supplier such as
wind or solar power. The utilization of transfer learning
is not limited in ammonia synthesis, it has the potential
to be applied in otherchemical processes.

Index Terms—Artificial intelligence, deep learning,
transfer learning, ammonia synthesis, dynamic optimiza-
tion.

1. INTRODUCTION

Ammonia has been caught global attention recently be-
cause it is considered as hydrogen cartier — the potential
energy resource. Ammonia produced based on wind power
or solar energy may reshape the configuration of global en-
ergy, which is called "liquid sunshine" [1]. Traditional am-
monia synthesis is though to be energy consuming and ac-
companied with large carbon emission. In recent years,
clean ammonia synthesis with low carbon emission and low
energy consumption is gradually arising, which is expected
to bring a revolution in ammonia production. However, the
uncertainty of wind power and solar energy limits the appli-
cation of clean ammonia synthesis. Therefore, optimization
tools are highly demanded for industrial application of
clean ammonia synthesis.
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Zhu(ORCid 0000-0003-2812-5406), with the Department of Chemical
Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R.
China (e-mail:zhux0447 @hotmailL.com).

1.1. Ammonia synthesis and process optimization

Ammonia synthesis has been studied for over a century,
and some progresses are just made recently. Most works fo-
cus on materials development, e.g. catalyst [2-4] and adsor-
bent [5,6]. Fewer works concern about process integration, i.
e. combining adsorption with reaction [7], plasma enhance-
ment [8] and even electro-catalysis [1]. Very few work con-
cern about dynamic optimization in industrial scale. But it
is crucial for realizing clean ammonia production, especial-
ly when the supply of resource gases are under variation. In
the process of ammonia synthesis (as shown in Fig. 1), hy-
drogen can be supplied viaelectrolysis of water. Nitrogen is
obtained from air separation unit (e.g. pressure swing ad-
sorption). The mixture of hydrogen and nitrogen are com-
pressed to reactive pressure, and preheated to initiate the
synthesis reaction. Reactor effluent gases are chilled and
condensed through a group of cooler. The anhydrous ammo-
nia is separated from recycle gas to yield high purity prod-
uct. The unreacted syngas is recycled through the reaction
loop. This process is regulated by a number of chemical-,
fluid mechanic- and thermal dynamic laws which brings
high level of complexity for the process optimization of
clean ammonia synthesis plant.
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Fig. 1. Flow diagram of ammonia synthesis process.

The complexity of ammonia plant brings challenge to-
wards process optimization. First, the actual industrial pro-
cess is often characterized by multiple peaks and high di-
mensional parameters. Physical model based optimization
technique (POT) works well on one dimensional search, but
performs worse on high dimensional task [9]. For example,
to find the optimal operation of distillation column, we tune
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the feed tray of the column while keep other parameters
fixed. But under actual industrial conditions, e.g. ammonia
synthesis, it contains 11 operational parameters (as shown
in Fig. 2), and all in instant fluctuation. Is that possible to
improve ammonia production based on the dynamic opera-
tion? Second, the variation under practical conditions are al-
most discontinuous or non-derivable. Therefore, the gradi-
ent-based algorithm is infeasible due to thehighly depen-
dence on derivability [10]. Lastly, the available time for ob-
taining solution is usually limited in the practice of chemi-
cal process optimization [10]. Therefore, computational effi-
ciency should be ensured. For this reason, artificial intelli-
gence (Al) has been considered as a valuable alternative
modeling approach to replicate the rigorous model and at
the same time obtain the same level of detail.

Separator temperature
Recycle rate

Fig. 2. Key operational parametexs for ammonia production.

Ammonia production

1.2. Artificial intelligence and transfer learning

Artificial intelligence (Al), especially machine learning
(ML) is thought to be revolutionary in chemical engineer-
ing. It is faster and more accurate to solve complex prob-
lems that expert system is slower to update new information
and make corresponding changes [11]. There are several pe-
riods of Al's development. The first period is the application
of neural networks (around 1990-2008) [11]. People used a
feedforward neural network with input, hidden and output
layers to solve nonlinear function approximation problems
in an automated manner [12]. Then, Rumelhart, Hinton, and
Williams developed a back-propagation algorithm to learn
hidden patterns from input-output data [11]. Afterward, Bak-
shi and Stephanopoulos developed the WaveNet [13], which
was an early work for nonlinear principal component analy-
sis. It is worth to notice that the progress of computational
capability in the recent decade initiates a new era of deep
learning.

Deep learning is a broad concept that may include deep or
convolutional neural nets (CNNs), reinforcement learning,
transfer learning, and statistical machine learning. CNN is a
filtering technique, well known in the domain of signals pro-
cessing, for extracting features from a noisy signal [14-16].
After initial specification of the network architecture and
the filter parameters such as the size and number of filters, a
CNN learns during training, from a large dataset to conduct
a successful performance based on appropriate filters. An-
other architectural innovation is the recurrent neural net-
work (RNN). RNN is an extension of the multilayer percep-

tron with feed back connections [17,18]. Long short-term
memory (LSTM) network is suited for making prediction
based on time series data, whereas overcomes the vanishing
of gradient descent in RNN [17,19]. Gated recurrent unit
(GRU) network architec ture can enhance processing of se-
quential information with only two gates—reset gate and
update gate [20,21]. As for reinforcement learning, it is
more like training a pet, which can get positive feedback
from desired performance [22]. But it requires large number
of resource data, which may not be achieved in chemical
process. Statistical ML is the combination of mathematical
methods from probability and statistics with ML techniques.
It includes a number of useful techniques such as LASSO,
Support Vector Machine, random forests, clustering, and
Bayesian belief networks [11].

Transfer learning (TL) is the adaptation of one process to
other similar process, so that the annotation reviews can be
reduced [23]. TL is currently used in the material field to an-
alyze the data and speed up material development. DeCost
et al. [24] utilized a transferred deep convolutional network
to learn representations of microstmctures and then used
these representations to infer underlying annealing condi-
tions. Wu et al. [25] used TL to refine the relationship be-
tween polymer chemistry and thermal conductivity. Wu et
al. [26] then generalized the TL strategy to other properties
of polymers and inorganic materials. Ma et al. [27] trans-
ferred the knowledge from 13 506 metal-organic framework
(MOF) adsorption to small sample data and built surrogate
models. Sun et al. [28] used TL to predict desorption of al-
kanediol/solvent/zeolite system, and reported an improved
accuracy. The essence of TL in material research is laid on
knowledge transfer. It can be a new insight into structure-
property relationship and drastically accelerate material evo-
lution.

So far, TL is used for model prediction. There are four
types of transfer learning based on literatures: parameter-
based transfer learning, which transfers parameters between
models; instances-based transfer learning, which focuses on
the instance weighting strategy; feature-based transfer learn-
ing, which focuses on transforming the original features to
the new feature representation; relational-based transfer
learning, which focuses on transferring the logical relation-
ship or rules. The recent work of Ma et al. [27] reported us-
ing parameterbased TL to improve prediction of MOF ad-
sorption data based on a small dataset training. The source
model was a deep neural networks (DNN5) trained on H, ad-
sorption data with 13 506 MOF structures at 100bar and
243K. The prediction target were adsorption capacity of
CH, at 100bar and 298K, and Xe/Kr at Sbar, 298K. They re-
ported that for Ha adsorption at 100bar and 130K, TL
worked in 89.3% of the cases. For CH, adsorption, TL
worked in 82.0% of the cases. For Xe/Kr adsorption, TL
worked in nearly 50.0% of the cases. As well known, in a
DNN-based model, the relationship between material struc-
ture and property is encoded in the weights and biases. Con-
sidering different adsorption mechanisms for MOF materi-
al, it may not be appropriate to use TL for model prediction
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across different gas species. However, we will present in this
work that TL can be used as an optimizer for chemical process.

1.3. The contribution of this work

This study made two novel contributions. First, we declare
that TL may not only be used as prediction model, but also
an optimization tool for chemical process to accomplish
high dimensional tasks. The case study of clean ammonia
synthesis with high dimensional variation is highlighted in
this paper to demonstrate the capability of TL. Second, we
propose an improved operation for ammonia synthesis on
an industrial size plant. Such dynamic optimization in indus-
trial scale are rare reported in the literature. These two con-
tributions address many of the limitations mentioned in sec-
tion 1.1 and 1.2.

2. MODEL DESCRIPTION

This section describes the model used for dynamic optimi-
zation of ammonia synthesis, which includes preparation of
operational data, encoder-decoder architecture for mapping
input-output relations, and transfer learning for optimiza-
tion.

2.1. Data preparation

The original data is collected from on-site operation of Ji-
angsu Nuomeng Inc., China, which is denoted as series B. It
contains dataset of 50 000 sampling points covering a peri-
od of 800hrs. Operational parameters include hydrogen feed
rate, hydrogen feed pressure, nitrogen feed rate, nitrogen
feed pressure, etc., as listed in Fig. 2. These parameters can
be divided into two categories: Cumulative parameters, as it
cumulates with time, such as hydrogen feed rate and nitroen
feed rate; State parameters, e.g. nitrogen feed pressure, reac-
tor inlet temperature, and reactor outlet pressure, etc.. The
output parameter in this case is ammonia production be-
cause it is main concerning of this work.

The series A is the comparison group which can be gener-
ated from variational method. This includes two steps: First,
a prior distribution pf(z) is generated from a dataset of z
(i); Then, a dataset of x (i) is generated from a conditional
distribution pf (x|z). A recognition distribution g¢ (z|x) is
used to mapping x (i) from the intractable tree posterior pd
(zJx). According to literature [29], the log-likelihood of x (i)
can be written as the sum of KL divergence and the lower
bound between the true posterior pf (z|x) and the approxi-
mation g (z|x).

logps(¢*)) = Dic1ga (2|2D)||po(2]2)] + L(6, ®;27) (1)
L0, ®:29) = B 0y [—log(ge (2]2)) + logpe(z]2©)](2)
After re-parameterization [29], the resulted distribution of x

(i) can be Written as:
2
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2.2. Encoder-decoder architecture for mapping inputout-
put relations

The relations between multiple input and single output of
ammonia production rate is replicated via encoder-decoder
architecture containing LSTM and GRU layers (Fig. 3). A
set of operational parameters are selected as decision vari-
ables such as hydrogen feed rate, hydrogen feed pressure,
nitrogen feed rate, nitrogen feed pressure, etc.. The opera-
tional parameters are input to the first layer of LSTM to
read the sequences and encode them in a fixed length vec-
tor. The encoded vector is then transferred to the second lay-
er of GRU to decode the information and coordinate it with
anunonia production rate. To output the terminal task, two
layers of dense neural networks are employed at the end.
The number of cells used in the LSTM layer, GRU layer
and first layer of dense neural network are 100, 100 and 10
respectively. It is used to give a forward step-size for model-
ing prediction with LSTM and GRU cells. In this case, we
just want to replicate the inputoutput relations, thus the for-
ward step-size can be set zero, as asupervised learning process.
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Fig. 3. The encoder decoder archltecture for
mapping input-output relations.

2.3. Transfer learning for optimization

In this case, we use transfer learning (TL) to find optimal
solution for ammonia synthesis. TL is used to play the role
of modeling prediction based on transferring knowledge
from small amount of data set. However, its intrinsic nature
lying in the transferring knowledge from weights and bias
makes it a strong tool for optimization. For optimization,
TL transfers operational pattern to one of the other opera-
tions. If the inherited operational pattern is superior than the
transferred pattern, the output, which is ammonia produc-
tion rate in this case, will be higher than the output of trans-
ferred pattern. We notice that the significant differences ex-
ist in the modeling prediction of material adsorption across
different gas species, as it works 89.3% for hydrogen predic-
tion, 82.0% for methane prediction, and nearly 50% for Xe/
Kr prediction [27]. It is not TL has low accuracy, but that TL

indicates relative adsorption capacity on different materials.
TABLE I
ALGORITHM FOR TL OPTIMIZATION

For series A and B,
1. Supervised learning of A-A and B-B using encoder-decoder architecture.
2. Transfer learning to compare results:
a. Transfer learning of A-B and B-A;
b. arg max {A-B, A-A, B-A, B-B},
IfA-A,
A'is superior than B
If B-B,
B is superior than A
Else, Aequals to B
Regeneration of A, and return to step 1.
End
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As an optimization tool, cross TL is essential to identify
an optimal solution from original operation and comparison
group. The process contains two steps: First, the input-out-
put relations is replicated via supervised learning, which ob-
tains the results of A-A and B-B. Second, the cross TL is ad-
opted to obtain the results of A-B and B-A. The TL calcula-
tion is also composed of two steps: The first step, the model
is trained with input data and saves its weights as input-out-
put relations. Secondly, the pretrained model is used to pre-
dict a similar process while keep the parameters of ultimate
layers fixed. The corresponding algorithm for TL optimiza-
tion is showed in Table 1. The concept design for TL optimi-

zation is showed in Fig. 4.
A B

A-A A-B B

| | | I

Supervised I
Learning TL

N\

Optimization

Fig. 4. Concept design for TL optimization.
3. RESULTS

In clean ammonia synthesis, hydrogen is supplied from
electrolysis of water, and the energy is provided by solar or
wind power. Due to the uncertainty of energy supplier, there
are two types of hydrogen feed strategy such as series A and
B (as shown in Fig. 5). Series A represents a low hydrogen
feed strategy with hydrogen consumption in one and a half
hour of 194.4moles. The hydrogen consumption is calculat-
ed by integrating hydrogen feed rate with time. In the same
period, hydrogen consumption for series B is 239.1moles,

500
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Fig. 5. Hydrogen feed rate of series A and B.

which is 22.9% higher than series A. Series A varies in a
range of 0269.5moles/hr, with average feed rate of
128.9moles/hr. Series B has a rate impulse up to 411.7
moles/hr. According to Haber reaction theory [7], This im-
pulse of hydrogen feed should react with an increase of ni-
trogen feed to keep the stoichiometry as 3:1 (3H,+N,—
2NH3). Therefore, an increase of hydrogen usually indi-
cates an increase supply of nitrogen.
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Fig. 6. Nitrogen feed rate of series A and B.

Nitrogen used for ammonia synthesis is supplied from air
separation unit, e.g. pressure swing adsorption. To keep the
stoichiometry as 3:1, nitrogen supply should be increased
accompany with the impulse of hydrogen feed (series B as
shown in Fig. 6). Therefore, in Fig. 6, the nitrogen consump-
tion of series B is 83.6moles in one and a half hour by time
integration, while it is 73.8moles for series A. The nitrogen
feed rate of series A varies in a range of 41.0-65.8moles/hr,
while it is 32.4-112.8 moles/hr for series B. However, the in-
crease of nitrogen and hydrogen feed does not ensure an in-
crease of ammonia production. As shown in Fig. 7, a lower
feed strategy of series A obtains higher ammonia production
rate than series B. The total ammonia production in one and
a half hour for series A is 38.3moles, 12% higher than that
of series B. It is good news for clean ammonia synthesis, be-
cause one can use less hydrogen and nitrogen while produce
more ammonia. To further understand the increase of ammo-
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Fig. 7. Ammonia production rate of series A and B.



INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS 12

nia production, we need to trace back to the state operational
parameters.
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Fig. 8. Hydrogen feed pressure of series A and B.

We trace back to the hydrogen and nitrogen feed pressure
of series A and B, as shown in Fig. 8 and Fig. 9 respectively.
For hydrogen feed pressure, series A adopts a higher pres-
sure strategy. The average pressure of series A in Fig. 8 is
78.1 bar, and 54% pressure points are over 78bar. Com-
pared with series A, hydrogen feed pressure of series B is
lower. The average pressure of series B in Fig. 8 is 77.4 bar,
0.6bar lower than series A. It indicates that higher pressure
for hydrogen supply is beneficial for ammonia synthesis in
this case. Higher feed pressure can reduce the hydrogen de-
mand by improving the efficiency of hydrogen supply. It is
especially useful for the renewable energy supplier such as
wind and solar power, because it allows more flexibility for
hydrogen generation.
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Fig. 9. Nitrogen feed pressure of series A and B.

As shown in Fig. 9, the nitrogen feed pressure of series A
is lower than series B. The average pressure of series A in
Fig. 9 is 65.9 bar, while it is 66.6bar for series B. The maxi-
mum feed pressure of series B is 68.6bar. Lower feed pres-
sure of nitrogen can not only reduce the power consumption
of gas compressor, but also increase the conversion rate for
ammonia synthesis. In this case, iron-based catalyst is used
for Haber reaction. The iron-based catalyst is rate limited of

nitrogen dissociation [30]. Therefore, low feed pressure of
nitrogen is superior to increasing ammonia conversion rate.
The state parameters-temperature and pressure for synthe-
sis reaction are shown in Fig. 10 and Fig. 11, respectively.
Fig. 10 shows the reactor inlet temperature of series A and
B. The inlet temperature of series A varies in a range of
710.4-713.7K. The variation range of series B is 710.5-
714.0K. The average temperature of series A in Fig. 10 is
711.8K, which is the same as series B. It indicates the reac-
tion temperature can not be reduced based on the same iron
catalyst. The reaction temperature is limited by chemical po-
tential, therefore, to reduce reaction temperature requires
the development of catalyst. However, based on the same
catalyst used, the reaction pressure can be reduced (series A
as shown in Fig. 11). The average reaction pressure is
112.0bar for series A, 5bar lower than the one of series B.
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Fig. 10. Reactor inlet temperature of series A and B.
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Fig. 11. Reactor inlet pressure of series A and B.

As we know that series A obtains higher ammonia produc-
tion, it is worth to learn the operational pattern of series A in
pre-cooling section, separation unit and recycle unit (Fig.
12-15). Generally, series A employs a distributed cooling
strategy, which balance the cooling duty between cooler
group and separator. However, series B put more cooling
duty on the separation unit. As shown in Fig. 14, the inlet
temperature of separator is increasing (series B), which cor-
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responds to the sharp decrease of entrance temperature of
cooler group in Fig. 12 and decrease of recycle rate in Fig.
15. As a result, the distributed cooling strategy makes series
A a more stable operation than series B in the recycle unit.
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Fig. 12. Entrance temperature of cooler group.
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Fig. 13. Exit temperature of cooler group.

4. DISCUSSION
To evaluate our proposed method for process optimization,
we use several conventional evaluation tools such as mean
squared error (MSE), mean absolute error (MAE), root
mean squared error (RMSE) and coefficient of variation
(CV). These tools are defined as follows:
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Fig. 14. Operational parameters for separator.
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Fig. 15. Recycle rate for ammonia synthesis.

Where x; is the original data of output, Yi is the mapping re-
slts from input parameters. x is the average of original data,
and N is the total number of observation.

The aforementioned evaluation criteria are utilized to eval-
uate whether the input parameters are selected appropriately
for replicating ammonia production. If an input parameter is
essential for mapping the input-output relations, the error is
increased when the certain parameter is permuted. In Table
11, we list 12 types of operational parameters which are con-
ventional measurement points in ammonia plant. In fact, not
all these parameters are necessary for mapping inputoutput
relations. As shown in Table II, reactor outlet temperature is
redundant because no error increase is observed. As omit-
ting other parameters, we observe error increase to different
extents. The results show that it is proper to use the rest 11
parameters as the key parameters for mapping inputoutput
relations.

In Fig. 16, MSE is utilized to decide if it is proper to use
the encoder-decoder architecture for mapping the input-out-
put relations. We use the encoder-decoder architecture to
train input dataset under supervised learning. For compari-
son, we employ several other time series models such as
RNN, LSTM and GRU. The encoder-decoder architecture
uses LSTM in the first layer as the encoder, and GRU in the
second layer as the decoder. As shown in Fig. 16, the encod-
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TABLE 1T

SENSITIVITY ANALYSIS FOR OPERATIONAL PARAMETERS
‘Without parameter MSE MAE(moles/hr)  RMSE (moles/hr)  CV (%))
H feed rate 0.00480 0.04428 0.06928 0.26854
Hy feed pressure 0.00483 0.04405 0.06950 0.26937
Ny feed rate 0.00493 0.04669 0.07021 0.27215
N> feed pressure 0.00486 0.04438 0.06971 0.27021
Reactor inlet temperature 0.00490 0.04361 0.07000 0.27132
Reactor outlet temperature 0.00477 0.04272 0.06907 0.26769
Reactor inlet pressure 0.00485 0.04613 0.06964 0.26993

0.00495
0.00481
0.00525
0.00509
0.00503

0.04364
0.04348
0.04311
0.04529
0.04508

0.07036
0.06935
0.07246
0.07134
0.07092

0.27270
0.26881
0.28084
0.27653
0.27489

Entrance temperature of cooler group
Entrance pressure of cooler group
Exit temperature of cooler group

Separator temperature
Recycle rate
er-decoder architecture has the best performance. It is more
accurate and converges faster than single layer of LSTM
and GRU. It is even more accurate than RNN to treat time
series problem. In process optimization, we concern more
about the ammonia production rate under different opera-
tional patterns. The model is acceptable as long as its accu-
racy does not exceed ammonia production rate. According
to Table H and Fig. 17, the listed evaluation criteria are far
below ammonia production rate and the comparison result
of A-B. Other modeling tool will not change the optimiza-
tion result. Therefore, the results demonstrate the effective-
ness of the encoder-decoder architecture for mapping rela-

tion.
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Fig. 16. Model evaluation for mapping the input-output relations.

To decide a better solution from series A and B, we use
cross comparison and list the results of A-A, A-B, B-A and
B-B in Fig. 17. As shown in Fig. 17, the result of A-A ob-
tains the highest ammonia production rate on time average.
B-A and B-B shows the same production rate at the interme-
diate level. The result of A-B has the lowest production rate
of 22.981moles/hr. Therefore, we can conclude that pattern
A is the optimal operation. It is discouraged to directly com-
pare the result of A-A with B-B, because chemical process-
es are incomparable in some cases. For example, a 10-Liter
reactor produces more than a 5-Liter reactor, but one cannot
say the operation of 10-Liter reactor is better than the 5-Li-
ter reactor. In fact, due to the worse mixing, the 10-liter re-
actor is usually less efficient. Therefore, the cross compari-
son is employed to ensure the comparability of two opera-
tions.

Compared with model optimization based on chemical
laws, the advantage of TL is laid on its efficiency at high di-

men-sional task, which is very time consuming for conven-
tional physical or chemical models. Although the TL model
is more like a "black box optimization algorithm", it is able
to improve the convergence velocity and behavior for aca-
demia and industrial application. Additionally, due to the
limited series for comparison, the results are tend to be local
sub-optimal. There might be better operation than A or
worse operation than B, which requires further study in the
future work. However, it is impressive that less hydrogen
supply but fed with higher pressure can enhance the ammo-
nia production, and 12% promotion of ammonia production
rate can be well acceptable for industrial practice.
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Fig. 17. Comparison of different operational patterns.
5. CONCLUSION

In this paper, we demonstrate that transfer learning can be
an optimization tool for chemical process such as ammonia
synthesis. The raw data are collected from on-site operation
of industrial-scale chemical plant. The comparison group are
generated from variational method. Encoder-decoder archi-
tecture containing LSTM and GRU layers is adopted to ex-
tract operational patterns from time series data based on su-
pervised learning. An improved operation can be filtered
through cross algorithm of transfer learning.

The industrial practice of ammonia synthesis brings a
challenging problem which is computationally demanding
and difficult to be solved using traditional methods. Trans-
fer learning combined with encoder-decoder architecture
can replicate such complex process without losing accuracy.
The transfer learning models are much faster, the computa-
tional time for the TL model is less than 1% of that needed
for the rigorous simulator, since the output from the TL is
not an iterative solution, and easier to use, once trained. The
use of TL model for optimization has the strength that is es-
pecially helpful for dynamic process applied on an industri-
al size plant. However, there is still a great need for further
efforts on process models and global optimization algo-
rithms using artificial intelligence architecture.

As a results, the ammonia production rate can be increased
by 12% with 22.9% less of hydrogen supply, 12% less of ni-
trogen supply, and Sbar lower of reaction pressure. The out-
come of this work will significantly benefit engineers and
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project managers working in the field of clean ammonia
synthesis, as it can be used as a reference leading to an im-
provement of operational strategy under high dimensional
uncertainty. Not only for ammonia synthesis, the method
proposed in this work has the potential to be applied in oth-
er chemical applications, e. g. styrene process, gasoline
blending process, carbon dioxide capture process, etc..
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