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   Abstract—Boilers  are  significant  contributors  to  carbon
emissions  and  pollutants  across  various  industrial  sectors.
Accurately  modeling  furnace  temperature  is  critical  for
optimizing  combustion  and  enhancing  operational  efficiency.
However,  modeling  poses  significant  challenges  due  to  the
interplay between rapidly changing dynamic processes and slowly
varying  static  data.  To  address  the  coupling  and  redundancy
inherent in these heterogeneous features, a hybrid framework for
boiler temperature modeling (HFBTM) is proposed in this paper.
The  framework  utilizes  a  multi-layer  dense  network  to  extract
static features and a selective state space model (S3M) to capture
dynamic  features.  These  features  are  effectively  combined
through  a  hybrid  feature  fusion  module  using  weighted
integration,  generating  accurate  temperature  predictions  across
multiple  future  time  steps.  Compared  with  traditional  single
dynamic  models,  HFBTM  mitigates  information  redundancy,
reduces  error  propagation,  and  serves  as  an  end-to-end  furnace
temperature  prediction  model  that  integrates  both  static  and
dynamic  features.  Experimental  results  demonstrate  that  the
HFBTM  framework  delivers  superior  prediction  performance
across  forecasting  tasks  of  varying  lengths.  Compared  with  the
existing  methods,  the  proposed  framework  achieves  higher
accuracy  and  meets  the  requirements  for  precise  modeling  of
boiler systems.
    Index Terms—Artificial  intelligence, boiler  dynamics  modeling,
combustion system, energy intelligence, boiler
  

I.  Introduction

Boilers  are  essential  components  in  various  industrial
sectors,  including  manufacturing  and  power  generation.
Accurate  monitoring  and  estimation  of  furnace  temperature
facilitates  the  timely  detection  of  anomalies,  thereby
enhancing  the  overall  stability  of  system  operations [1].
Furthermore,  precise  modeling  of  the  internal  temperature  of
boiler  serves  as  the  foundation  for  effective  combustion
control,  which  improves  thermal  efficiency  and  reduces  both
energy  consumption  and  environmental  impact [2, 3].
However,  achieving  accurate  temperature  estimation  is
hindered by several challenges, including uncertainties in fuel
calorific  values,  the  complex  and  nonlinear  nature  of  heat
transfer processes, and the delays in system responses.

Traditional  boiler  temperature  modeling  approaches  are
grounded  in  physical  principles,  including  thermodynamics,
mass  conservation,  and  energy  conservation [4, 5].  These
methods  utilize  numerical  analysis  to  develop  mathematical
representations  of  the  boiler  combustion  system.  However,
they often rely on numerous empirical formulas, complicating
the construction of accurate quantitative models [6, 7]. In the
control field, state-space models [8] are commonly employed,
providing  a  structured  framework  for  describing  energy
conversion,  material  flow,  and  heat  transfer  in  complex
systems.  Despite  their  utility,  state-space  models  face  certain
limitations,  such  as  parameter  uncertainty,  system
nonlinearity, and sensitivity to disturbances, which can hinder
their generalization in practical applications [9, 10].

Recent  advancements  in  artificial  intelligence  have
introduced  data-driven  approaches,  which  show  significant
potential for improving boiler temperature modeling [11, 12].
Among  these,  recurrent  neural  networks  (RNNs)  capture
temporal  dependencies  by  transferring  latent  features  across
time steps, enabling the prediction of boiler temperature [13].
Furthermore,  while  maintaining  the  original  RNN  structure,
variants such as long short-term memory (LSTM) [14, 15] and
gated  recurrent  unit  (GRU) [16, 17] employ  gating
mechanisms  to  control  the  amount  of  latent  feature  transfer,
thereby  addressing  the  vanishing  and  exploding  gradient
problems  encountered  during  temperature  prediction.  When
facing the long-period prediction tasks, it is necessary for the
model  to  capture  dependencies  over  extended  time  ranges,
which  shares  similarities  with  the  objectives  in  natural
language processing (NLP). As a result, the transformer model
[18],  originally  designed  for  NLP  tasks,  has  become
increasingly  popular  in  time-series  forecasting.  Its  self-
attention mechanism allows it to capture dependencies across
distant  time  points,  making  it  highly  effective  in  modeling
long-range  dependencies  and  complex  dynamics [19–21].
However,  the  computational  cost  of  the  transformer  model
increases  as  the  sequence  length  grows,  leading  to  decreased
efficiency with larger inputs. To address these limitations, the
selective  state  space  model  (S3M)  has  been  designed  for
Mamba [22, 23], which introduces a dynamic state matrix that
selectively  filters  and  retains  essential  information,  thereby
improving computational efficiency and model performance.

Despite  these  advancements,  most  artificial  intelligence
based  boiler  temperature  modeling  methods  utilize  a  single
model  to  simultaneously  process  inputs.  Specifically,  all
inputs  are  combined  into  a  one-dimensional  column  vector
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and fed into the model for training. This approach relies on the
model  to  capture  the  relationships  between  various  variables
and  temperatures.  However,  the  combustion  process
encompasses  both  rapidly  changing  dynamic  processes  and
slowly  changing  static  processes.  When  a  single  model  is
employed  for  training,  this  heterogeneity  can  lead  to
information  redundancy  and  ineffective  feature  selection,
thereby hindering the stability and convergence of model.

In order to resolve these problems, a hybrid framework for
boiler  temperature  modeling  (HFBTM)  that  integrates  both
static  and  dynamic  features  is  proposed  in  this  paper.  The
primary components of the research are structured as follows:

(1)  The  HFBTM  employs  two  distinct  networks  to  extract
different  types  of  features:  a  multi-layer  dense  network  for
static  characteristics  and  the  S3M  for  dynamic  temperature
variations.

(2)  The  HFBTM  decouples  and  integrates  static  and
dynamic  features,  enabling  a  more  comprehensive  feature
representation to  capture  the complex behaviors  of  the boiler
system.

(3)  Detailed  experiments  and  comparisons  are  conducted,
with  experimental  results  validating  the  effectiveness  of  our
proposed method.  

II.  Methodology
  

A.  Problem Description
In  general,  the  furnace  temperature  prediction problem can

be described as
 

Y t+p
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t−1
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where  denotes  the  historical
furnace  input  from  time  step  to  time  step ,

 denotes  the  historical  furnace
temperature  from  time  step  to  time  step ,  and

 denotes the furnace temperature to be
predicted  in  the  future  time  step .  In  order  to  distinguish
different types of input features, we extend this problem as
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where  denotes  the  static  input  parameter  and 
denotes  the  dynamic  input  parameter, .
Two different types of input data are shown in Fig. 1.  

B.  Hybrid Framework for Boiler Temperature Modeling
The HFBTM is structured around two core components: the

static  feature  encoding  module  and  the  dynamic  feature
encoding  module.  The  static  feature  encoding  module
employs  a  multi-layer  dense  network,  whereas  the  dynamic
feature  encoding  module  is  built  on  the  S3M  model.  Static
features,  such  as  the  physical  structure  of  boiler  and
environmental  conditions,  remain  relatively  stable  or  change
gradually  over  short  periods.  In  contrast,  dynamic  features,
such  as  power  regulation  and  temperature  variations  during
combustion, demonstrate significant temporal fluctuations and
exhibit complex, nonlinear behaviors. Both static and dynamic
features collaboratively influence the temperature dynamics of
the boiler system.

T
ws wd

Using a single model to process both types of features may
cause  feature  entanglement,  introducing  redundant
information  that  disrupts  the  learning  process  and  impairs
convergence,  especially  when  handling  static  features.  To
mitigate  this  issue,  the  HFBTM  framework  decouples  static
and dynamic features, capitalizing on the distinct strengths of
both  modules  to  effectively  capture  feature-specific  patterns
and enhance predictive performance.  The overall  architecture
of  the  HFBTM  network  is  depicted  in Fig.  2.  denotes  the
final  predicted  temperature,  and  denote  the  learnable
attention coefficients.  

a.  Static Feature Encoding Module
The  static  feature  encoding  module  utilizes  a  multi-layer

dense  network  to  extract  complex  and  meaningful  features
from  the  static  input  data  of  the  boiler  system.  These  static
features,  such  as  the  physical  structure  of  the  equipment,
environmental conditions, and operational parameters, remain
relatively  stable  or  change  gradually  over  short  periods,  but
play  a  crucial  role  in  shaping  the  operational  state  of  system
and  temperature  control.  The  multi-layer  dense  network
combines  neurons  across  multiple  layers  to  model  latent
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Figure 1 Diagram illustration of the process of prediction.
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Figure 2 Structure of HFBTM.
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interactions  among  static  features.  Nonlinear  activation
functions,  such  as  rectified  linear  unit  (ReLU),  are  applied
between  layers  to  enhance  the  ability  of  network  to  capture
complex patterns.

This architecture efficiently processes the high-dimensional
static  inputs  of  the  boiler  system,  reflecting  the  influence  of
long-term stable states on temperature dynamics and offering
more  accurate  static  feature  representations  for  predictive
tasks.  The mathematical  formulation of  the multi-layer  dense
network is provided as
 

f (l)
s = fActivation

(
w(l) f (l−1)

s +b(l)
)

(3)

f (0)
s = S t−h

l ∈ [0,1,2, . . . ,L] L
w(l)

b(l) L
fActivation

f (L)
s

where  denotes  the  input  of  the  multi-layer  dense
network,  denotes  the  layer  index,  denotes
the  total  number  of  layers  in  the  network,  denotes  the
weight  matrix,  denotes  the  bias  vector  of  the -th  layer,
and  denotes the nonlinear activation function applied
at each layer. The final output of the network  denotes the
extracted  static  feature  vector,  which  is  used  for  the
subsequent fusion and prediction of dynamic features.  

b.  Dynamic Feature Encoding Module
Mamba  is  a  novel  neural  network  architecture  designed  to

efficiently  filter  and  propagate  the  dynamic  states  of  input
data  through  the  S3M.  Unlike  traditional  models  with  fixed
parameters,  the  state  matrix  parameters  in  Mamba  adapt
dynamically  to  the  input  sequence,  which  is  essential  for
capturing  the  rapidly  changing  characteristics  of  boiler
systems.  Given that  boiler  temperatures  can fluctuate  sharply
in  response  to  external  disturbances,  the  Mamba  model
selectively  filters  these  dynamic  features,  retaining  critical
information  during  state  transitions  while  discarding
redundancies. The structure of the S3M is illustrated in Fig. 3.
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Figure 3 Structure of S3M.
 

This  module  incorporates  latent  states  to  describe  the
mapping  between  input  and  output  sequences  using  linear
state space models. It can be expressed as
 

dht

dt
= Aht +BDt (4)

 

ot =Cht (5)
ht Dtwhere  denotes  the  hidden  state,  denotes  the  dynamic

input  parameter,  and A, B,  and C denote  the  parameter

matrices  of  the  system  state  space  models,  respectively.
Specifically, A is  the  high-order  polynomial  projection
operator  (HIPPO)  matrix [24],  and  each  element  in A is
defined as
 

ai j =


(2i+1)1/2(2 j+1)1/2, i > j;
i+1, i = j;
0, i < j

(6)

The state matrix A is upper triangular, which means that the
hidden state at each time step is influenced solely by previous
time steps. This structure ensures that the weights in the upper
triangular portion are zero, contributing nothing to the current
hidden state. As a result, the model preserves the causality of
the  time  series  by  preventing  future  values  from  influencing
the current computation.

Additionally,  the  parameter  matrices B and C are  derived
from input  variables  through linear  transformations,  allowing
the  model  parameters  to  adapt  dynamically  based  on  the
input.  These  modifications  allow  the  S3M  to  discard
unnecessary  information  and  emphasize  significant  dynamic
features.

The data processed by the computer are discrete sequences.
Using  the  discretization  techniques  of  continuous  state  space
models,  the  resulting  linear  state  space  model  is  constructed
as
 h(k+1) = Āh(k)+ B̄D(k),

o(k) =Ch(k)
(7)

h(k) k
h(k+1) k+1 D(k)

k Ā B̄

where  denotes  the  internal  state  of  the  model  at  step ,
 denotes  the  hidden  state  at  the  next  step , 

denotes  the  model  input  at  step ,  and  and  are  the
discretized  system  parameter  matrices.  The  specific
discretization process can be expressed as

 

Ā = e∆A (8)
 

B̄ = (∆A)−1(e∆A− I) ·∆B (9)
∆ ∈ (0,1) Iwhere  denotes the discrete step length and  denotes

the identity matrix.  

c.  Feature Fusion Module
To  integrate  static  and  dynamic  features  effectively,  the

HFBTM  framework  incorporates  a  hybrid  feature  fusion
module  that  seamlessly  combines  the  outputs  from  the  static
encoding  module  and  the  dynamic  encoding  module.  The
temperature  of  boiler  system  is  influenced  by  both  types  of
features.  Static  features  represent  the  physical  properties  of
the  equipment  and  gradually  changing  factors,  and  dynamic
features  capture  real-time  fluctuations  and  external
disturbances.  The  fusion  module  enhances  the  accuracy  and
stability  of  multi-step  temperature  predictions  by  combining
these features through concatenation and weighted integration.
This module can be expressed as
 

T = wT (ws · f (L)
s +wdo(k))+wT (10)

T ws wd
wT dT

where  denotes  the  final  predicted  temperature,  and 
denote  the  learnable  attention  coefficients,  and  and 
construct the linear layer for the final predicted temperature.  
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III.  Experiment
  

A.  Dataset
To  validate  the  effectiveness  of  HFBTM,  operational  data

are  derived  from  the  distributed  control  system  (DCS)  in  a
waste-to-energy plant from 1 April 2019 to 30 May 2019. The
height of the incinerator in this power plant is 63.20 m, with a
cross-sectional area of 20.53 × 12.56 m2, utilizing a two-stage
reciprocating grate  to  push the fuel.  The primary air  fans are
located below the grate,  with a total  of 4 units.  The structure
of the boiler is shown in Fig. 4.
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Figure 4 Structure of furnace.
 

This  study  identifies  a  set  of  22  variables  that  influence
furnace temperature based on expert insights [25]. The model
predicts  the  average  furnace  temperature,  with  the  variables
and their statistical  properties summarized in Tables 1 and 2,
respectively.

For  each  input  and  output  variable,  12,000  samples  are
collected at a 60 s sampling interval. A sliding window cross-
validation  strategy  is  employed  to  effectively  handle  the
temporal  dependencies.  In each iteration,  a  time-ordered data
window is used, with the first 80% serving as the training set
and  the  remaining  20% as  the  testing  set.  The  window  is
shifted  forward  across  multiple  rounds  to  ensure
comprehensive evaluation and mitigate overfitting to specific
time segments. To reduce noise, the Savitzky-Golay filter [26]
is  applied.  All  data  are  normalized  using  Z-score
normalization to a range of [0, 1], eliminating the influence of
outliers and accelerating network convergence.  

B.  Experiment Setup
Four  time-series  prediction  methods  are  selected  as

comparison, including:
(1)  CNN-Seq2Seq [27]:  an  LSTM-based  encoder-decoder

architecture with attention and CNN;
(2) Transformer [19]: a transformer architecture with CNN;
(3)  Informer [28]:  a  transformer  architecture  with  sparse

self-attention mechanism;
(4) Mamba [22]: a Mamba model.
In  the  comparative  experiments,  we  select  similar

parameters  for  networks  with  analogous  structures  to  ensure
fair  and  accurate  comparisons.  Specifically,  the  CNN
convolution kernel is set to 3, and a residual structure is used.

The  LSTM architecture  comprises  two layers,  each  with  128
hidden  units  and  a  dropout  rate  of  0.2.  Both  the  transformer
and  informer  models  are  configured  with  the  same
hyperparameters,  each  model  containing  6  layers,  a  hidden
dimension  of  128,  8  attention  heads,  and  a  feedforward
network dimension of 2048. The Mamba and HFBTM are also
configured with identical settings, using 6 layers and a hidden
layer  dimension  of  128.  All  models  use  ReLU  as  the
activation  function,  and  the  Adam optimizer  is  employed  for
optimization.  The  learning  rate  is  configured  at  2.0×10−4,
accompanied  by  a  weight  decay  of  1.0×10−4.  The  initial
learning rate is set to 1.0×10−4, with a dropout rate of 0.2. The
training  process  spans  1000  epochs,  incorporating  early
stopping  to  mitigate  overfitting.  The  evaluation  indicators
used in this paper are root-mean-square deviation (RMSE) and
mean absolute error (MAE), which can be expressed as
 

RMSE =

√√√
1
N

N∑
i=1

(yi− ŷi)2 (11)

 

MAE =
1
N

N∑
i=1

|yi− ŷi| (12)

N
ŷi yi

where  denotes  the  total  number  of  time  steps  across  all
sequences,  denotes the output of the network and  denotes
the ground-truth value.

The construction and training are conducted using PyTorch
2.3.0  in  a  Python  3.11.0  environment.  The  experimental
hardware setup consists of an Intel (R) Core i7–117000 CPU

 

Table 1 Description of variable in dataset.
Classification Variable Description Unit

Static

x1 Input waste weight t

x2 Air chamber pressure 1 Pa

x3 Air chamber pressure 2 Pa

x4 Air chamber pressure 3 Pa

x5 Air chamber pressure 4 Pa

x6 Blower outlet pressure 1 kPa

x7 Blower outlet pressure 2 kPa

x8 Blower outlet pressure 3 kPa

x9 Blower outlet pressure 4 kPa

x10 Blower air output volume 1 m3/h

x11 Blower air output volume 2 m3/h

x12 Blower air output volume 3 m3/h

x13 Blower air output volume 4 m3/h

x14 Waste thickness on unit 1 mm

x15 Waste thickness on unit 2 mm

x16 Waste thickness on unit 3 mm

x17 Waste thickness on unit 4 mm

Dynamic

x18 Oxygen content %

x19 Primary air outlet temperature °C

x20 Moisture content %

x21 Ash content %

Output y Average furnace temperature °C
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running at 2.50 GHz, a 24 GB NVIDIA GTX 3090 GPU, and
64 GB of RAM.  

C.  Result Analysis
The experimental results, as shown in Table 3, indicate that

the  CNN-LSTM  hybrid  model  performs  the  worst  across  all
forecasting tasks. In 10-step forecasting, both transformer and

informer  demonstrate  advantages,  achieving  RMSE
improvements  of  at  least  29.1% and  16.9%,  and  MAE
improvements  of  32.7% and  31.1%,  respectively,  compared
with  CNN-LSTM.  The  Mamba  model  delivers  the  best
performance  in  10-step  forecasting  due  to  its  selective
mechanism,  which  allows  the  model  parameters  to  adapt
quickly to short-term data variations.

 
 

Table 3 Evaluation of prediction accuracy for different models. Bold indicates the optimal results.

Method
Step 10 Step 20 Step 30

RMSE MAE RMSE MAE RMSE MAE

CNN-LSTM 6.864 40.811 8.774 66.629 10.309 91.912

Transformer 4.862 27.455 7.287 45.887 9.413 76.704

Informer 4.531 27.112 6.864 44.811 9.086 71.415

Mamba 4.137 22.221 6.829 41.795 8.774 66.629

HFBTM 4.216 23.419 6.797 40.811 8.425 61.430

 
As  the  forecasting  horizon  extends  to  20  steps,  both

performances  of  transformer  and  informer  decline,  though
both continue to outperform CNN-LSTM. This highlights the
effectiveness  of  self-attention  mechanisms  in  capturing  long-
range  dependencies.  Under  these  conditions,  the  proposed
HFBTM framework slightly outperforms Mamba, with RMSE
improving by 4.6% and MAE by 2.4%.

In  30-step  forecasting,  informer  achieves  higher  accuracy
than  transformer,  with  RMSE  and  MAE  improvements  of
3.5% and  6.9%,  respectively.  Mamba  also  surpasses
transformer,  with  RMSE  improving  by  6.7% and  MAE  by
13.1%.  At  this  horizon,  the  proposed  HFBTM  framework
achieves the highest predictive accuracy among all models.  

IV.  Conclusion

An  HFBTM  is  proposed  in  this  paper,  which  integrates  a
multi-layer dense network with a selective state space model.
By  decoupling  static  and  dynamic  features  and  processing
them separately, the framework addresses the issue of feature
redundancy  in  boiler  time  series  data,  enhancing  the
robustness  and  accuracy  of  furnace  temperature  predictions
and  enabling  precise  modeling  of  the  boiler  combustion
system.  Compared  with  the  existing  models,  such  as  CNN-
LSTM,  transformer,  and  informer,  HFBTM  demonstrates

superior  adaptability  and  generalization  in  multi-step
prediction tasks.

This  study  introduces  new  methods  and  insights  for
improving  combustion  efficiency  and  enhancing  the
operational  stability  of  boiler  systems.  To  further  optimize
energy  utilization,  future  research  will  explore  control
strategies tailored to HFBTM to achieve precise regulation of
boiler control parameters. Additionally, we aim to investigate
faster  modeling  techniques  to  enable  real-time  modeling  of
boiler systems.  
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