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   Abstract—Overhead  cranes  play  a  critical  role  in
manufacturing, shipping, and construction industries. To improve
operational  efficiency  and  safety,  effective  anti-swing  control  is
essential for crane automation. Traditional anti-swing algorithms
often  struggle  with  the  non-linearity  of  system  and  are
incompatible  with  the  existing  velocity  control  interface.  In  this
paper,  we  propose  a  novel  anti-swing  control  method  for
overhead cranes based on embodied intelligence. We implement a
conventional  anti-swing  control  algorithm  based  on  trajectory
planning  and  PID controllers  to  generate  demonstration  data  in
simulated  environment.  Using  the  collected  demonstration  data,
we  apply  imitation  learning  to  train  an  embodied  agent  in
performing anti-swing control. Action chunking with transformer
(ACT)  algorithm  is  utilized  to  enhance  the  ability  of  agent  to
model  the  mapping  between  observations  and  action  sequences.
In  simulation  experiments,  our  proposed  method  outperforms
conventional  anti-swing  control  algorithms  in  suppressing  the
maximum  transient  of  payload  and  eliminating  residual  swing
under similar efficiency.
    Index Terms—Overhead  crane, anti-swing  control, embodied
intelligence, imitation learning, action chunking
  

I.  Introduction
  

A.  Motivation
Overhead  cranes  are  essential  large-scale  transportation

equipment  widely  used  in  manufacturing,  shipping,  and
construction,  as  shown  in Fig.  1.  Because  the  payload  is  not
rigidly  connected  to  the  crane,  swing  during  operation  is
inevitable.  The  pendulum-like  movement  of  suspended  loads
not  only  increases  the  risk  of  accidents  but  also  reduces
operational  efficiency  and  shortens  the  lifespan  of  crane [1].
As  a  result,  anti-swing  control  techniques  are  crucial  for
enhancing  the  automation  and  intelligent  operation  of
overhead cranes.

Experienced crane operators can reduce swing by reversing
handle  operations  in  acceleration  and  deceleration  phases.
However,  this  manual  approach requires  a  high  level  of  skill
from  operators  and  is  often  ineffective  in  fully  eliminating
minor oscillations.

Traditional  control  methods  are  successful  in  reducing
oscillations by modeling the crane system and designing anti-
swing  control  laws.  However,  there  are  several  limitations.
First,  accounting  for  the  flexibility  of  the  rope  and  external
disturbances in crane-load system models is challenging. As a
result, traditional anti-swing control algorithms often struggle
with  cranes  that  have  high  lifting  heights,  such  as  quayside
cranes.  Second,  these  algorithms  typically  use  the  driving
force of the crane as the control input. However, most existing
overhead cranes are controlled by PLCs, which primarily offer
a  velocity  control  interface.  This  makes  it  difficult  to
implement  these  algorithms  in  existing  systems.  Finally,
traditional  anti-swing  algorithms  often  face  difficulties  in
balancing swing reduction with operational efficiency, as this
trade-off  cannot  be  easily  managed  by  simply  adjusting
controller parameters.

With  the  booming  of  artificial  intelligence  (AI),  machine
learning methods are used in conventional control tasks [2, 3]
and  industrial  scenario [4].  Among  all  paradigms  for  AI,
embodied artificial intelligence emphasizes the importance of
physical interaction between an agent and its environment [5].
Unlike pure computational models, embodied agents use their
physical  presence  to  gather  sensory  input,  adapt  to  their
surroundings,  and  refine  their  actions  in  real-time.  This
approach  is  particularly  valuable  for  tasks  that  require
continuous  adaptation  and  dynamic  control,  such  as  crane
operation, where the environment and payload conditions are
constantly changing.

Imitation  learning  is  one  of  the  key  machine  learning
methods employed in embodied AI. The method advocates for
agents  to  learn  and  acquire  the  ability  to  solve  specific  tasks
by  observing  and  imitating  expert  demonstration  data [6].
Imitation  learning  not  only  accelerates  the  learning  process,
but  also  helps  agents  better  understand  and  adapt  to  their
physical environment. Through imitation learning, agents can
learn to perform complex tasks by observing expert  behavior
without  the  need  for  explicit  programming  instructions.  The
core  idea  of  imitation  learning  is  to  extract  knowledge  from
expert behavior and transform it  into strategies that the agent
can  understand  and  execute.  Behavior  cloning  (BC)  is  one
typical  approach  to  this  process [6].  Currently,  imitation
learning  technique  is  widely  applied  in  tasks,  such  as
autonomous navigation,  robotic  manipulation,  and interactive
learning [5, 7].

Embodied  intelligence  and  imitation  learning  hold  great
potential in developing the anti-swing techniques for overhead
cranes.  By  leveraging  data  from  expert  crane  operators,
imitation learning can train deep learning models to replicate
expert  decision-making  processes,  leading  to  smoother  and
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more  accurate  control  of  the  movement  of  crane.  Unlike
traditional anti-swing control algorithms that rely on complex
mathematical  models,  the  anti-swing  algorithm  based  on
imitation  learning  can  handle  non-linearities  such  as  rope
flexibility  and  external  disturbances  without  detailed  system
modeling.  Deep  neural  networks  (NNs)  actually  model  the
nonlinear  crane-payload  system  during  the  training  process.
Moreover, imitation learning based algorithms can be adapted
to  work with  the  velocity  control  interfaces  of  existing crane
systems, making it easy to deploy the algorithm in real world.
The  flexibility  of  imitation  learning  enables  a  more  effective
balance  between  minimizing  payload  swing  and  maintaining
high  operational  efficiency.  By  providing  varied  expert  data,
we  can  adjust  the  operating  style  of  agent  to  suit  different
performance needs.

To  solve  the  problems  of  conventional  anti-swing
algorithms,  novel  embodied  anti-swing  control  algorithms
based on imitation learning need to be proposed.  

B.  Contribution
In  this  paper,  we  implement  a  novel  embodied  anti-swing

control  algorithm  for  overhead  cranes  through  imitation
learning. Our main contributions are listed as follows:

(1)  We  formulate  the  anti-swing  control  problem
considering the non-linearity and uncertainty.

(2)  We  propose  embodied  AI  imitation  to  learn  this  non-
linearity  and  uncertainty.  To  the  best  of  our  knowledge,  it  is
the  first  time  that  embodied  intelligence  has  been  applied  in
learning the anti-swing behavior.

(3)  The  proposed  algorithm  is  successfully  validated
through experiments in simulated environment.  

C.  Organization
Related works  about  anti-swing control,  imitation learning,

and  relevant  deep  learning  architectures  are  introduced  in
Section  II.  Then,  our  proposed  methods  are  presented  in
Section  III,  followed  by  experiments  in  Section  IV.
Conclusions are summarized in Section V.  

II.  Related Work
  

A.  Anti-Swing Control for Overhead Crane
Based  on  control  theory,  plenty  of  anti-swing  control

techniques  for  overhead  cranes  have  been  developed.  They
can  be  divided  into  two  categories:  open-loop  methods  and
closed-loop methods.  Input  shaping [8–10] is  a  classic  open-
loop  control  technique.  Input  shaping  reduces  oscillations  of
the  crane-load  system  by  pre-programming  a  sequence  of
impulse  control  commands  that  counteract  oscillation  caused
by  each  other.  In  contrast,  the  linear  quadratic  regulator

(LQR)  is  a  closed-loop  optimal  control  method  for  crane
control. This technique adjusts the control inputs according to
the  real-time  state  feedback  and  designs  the  optimal  control
law  based  on  linearized  crane  system [11].  The  closed-loop
controller  is  also  widely  used  in  the  anti-swing  control  of
overhead  cranes [12].  With  the  booming  of  artificial
intelligence, neural network based control and other AI-based
methods  have  been  introduced  to  improve  anti-swing
performance.  Neural  networks  can  learn  complex
relationships  in  the  crane  dynamics  and  adapt  over  time  to
reduce  swing  in  uncertain  or  changing  conditions.  Adaptive
proportional  derivative  like  neural  network  (APIDLNN) [3]
proposed  an  NN-based  controller  that  is  capable  of
eliminating the payload swing under non-zero initial condition
and disturbances.  

B.  Imitation Learning
Due  to  the  rapid  development  of  deep  learning,  imitation

learning,  an  essential  machine  learning  method  of  embodied
AI, has been widely applied to tasks such as robot control and
autonomous driving in recent years. Autonomous land vehicle
in a neural network (ALVINN) [13] is one of the earliest and
most famous applications of behavior cloning. ALVINN uses
neural  networks  to  map  visual  inputs  to  steering  actions  for
autonomous  vehicle  control.  It  is  a  pioneering  work  that
demonstrates  the  potential  of  imitation  learning  by  imitating
human  driving  behavior.  Generative  adversarial  imitation
learning  (GAIL) [14] is  built  upon  the  framework  of
generative adversarial networks (GANs) [15] and applies this
adversarial learning approach to imitation learning. It is highly
useful  in  complex  environments,  where  specifying  a  reward
function is difficult. In project ALOHA (ALOHA = a low-cost
open-source  hardware  system  for  bimanual  teleoperation),
action  chunking  with  transformer  (ACT)  algorithm  was
proposed  to  address  the  compounding  error  problem  of
imitation  learning [16, 17].  The  novel  imitation  learning
algorithm  manages  to  train  bimanual  robots  to  accomplish
complex  tasks,  such  as  opening  a  translucent  condiment  cup
and inserting a battery, with a success rate of 80%–90%.  

C.  Conditional Variational Auto-Encoder (CVAE)
Conditional variational auto-encoder [18] is an extension of

the standard variational auto-encoder (VAE) [19], designed to
incorporate  additional  context  into  its  latent  variable
generation process. Unlike the VAE, which learns to represent
input  data  as  a  latent  distribution,  the  CVAE  conditions  this
representation  on  some  auxiliary  information.  This  makes  it
particularly suitable for structured prediction tasks, where the
output is expected to be influenced by specific conditions.  

D.  Transformer Model
The  transformer  model  is  a  deep  learning  architecture  first

introduced  in  2017  by  researchers  at  Google [20].  The  core
innovation  of  transformer  is  its  self-attention  mechanism,
which allows the model  to  weigh the importance of  different
tokens in a sequence, regardless of their positions. Compared
with  earlier  models  like  recurrent  neural  networks  and  long
short-term memory networks, the transformer model achieves
greater  performance  and  efficiency  in  sequence-to-sequence
tasks.  

 

(a) Bridge crane (b) Quay crane
 
Figure 1 Overhead crane.
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III.  Approach

In  this  section,  we  first  introduce  the  baseline  anti-swing
algorithm  based  on  trajectory  planning  and  PID  controller.
Following  that,  we  provide  a  detailed  explanation  of  the
proposed  imitation  learning  based  algorithm,  including  the
structure of our model as well as the training processes.  

A.  Trajectory Planning and PID Based Anti-Swing
To  efficiently  collect  demonstration  data,  we  first

implement a conventional anti-swing control algorithm based
on trajectory planning and PID.

The  trajectory  planner  serves  as  the  feedforward  of  the
control framework. The trajectories are generated based on the
simplified dynamic model of overhead cranes. The real-world
overhead crane system is a multi-variable nonlinear system. It
can be simplified to a trolley-load system, as shown in Fig. 2.
M and m denote the mass of the trolley and the payload. F and
f represent the driving force and the friction of the trolley. x, l,
and θ are  three  system  variables  indicating  the  position  of
trolley,  rope  length,  and  the  swing  angle  of  the  payload.
Assuming that the rope length is constant and the swing angle
is  generally  less  than  0.1  rad,  we  can  linearize  the  system.
Based  on  the  Lagrange  equation [21],  we  can  further  obtain
the  relationship  between  the  acceleration  of  trolley  and  the
swing angle of payload as
  

M
f

x·

F
l

m

θ

 
Figure 2 Simplified crane system.
 
 

θ̈(t)+gθ(t) = −ẍ(t) (1)
gwhere  is  the  acceleration  of  gravity.  If  the  acceleration  of

trolley is a step signal, the time response of swing angle is
 

θ(t) = −a
l

(cos(ωnt)−1) (2)

ωn =
√

g/l a

(−a/l,0)
a/l θ̇/ωn θ

2π
√

l/g

where ,  and  is  the  acceleration  of  trolley.
According  to  the  phase  plane  analysis  method,  the  swing
angle can be represented as a circle with center  and
radius  in the phase plane with  as the y-axis and  as
the x-axis,  as  shown  in Fig.  3.  By  ensuring  that  the
acceleration  time  and  deceleration  time  are  the  same  as  the
period  of  the  swing  angle,  we  can  avoid  the  unnecessary
oscillations.  Therefore,  we  can  plan  a  three-phases  motion
trajectory for the trolley with acceleration/deceleration time as

.
To increase the robustness and the stability of the anti-swing

algorithm, we utilize two parallel PID controllers as the frame
of  the  anti-swing  controller [22].  The  open-loop  trajectory
planning serves as the feedforward for our controller. One PID
controller  is  used  to  regulate  the  swing  angle,  and  the  other

xd
vd

deals  with  the  error  between  the  position  of  trolley  and  the
desired  position  calculated  by  the  trajectory  planner.  The
overall structure for this controller is shown in Fig. 4.  is the
desired  position  planned  by  the  trajectory  planner,  and  is
the control input for the crane system.
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Figure 4 Overall  structure  for  the  trajectory  planning  and  PID-based  anti-
swing controller. The trajectory planner outputs the reference position signal.
The outputs of parallel PID controllers are sumed up to calculate the reference
trolley velocity.
   

B.  Action Chunking in Anti-Swing Task

θ
ot

at

πθ(at | ot)
πθ(at+k | ot) k

The  ACT  algorithm,  originally  developed  for  fine-grained
bimanual  manipulation  tasks,  shows  great  potential  for  crane
anti-swing control.  In the original algorithm, action chunking
[23] is  used  to  mitigate  the  compounding  errors  typically
encountered  in  imitation  learning algorithms.  Let  represent
the  parameter  of  the  deep  learning  model,  represent  the
observation,  and  represent  the  control  action.  Unlike
conventional  imitation  learning  algorithms  that  learn

,  the  ACT  algorithm  trains  the  network  to  model
,  where  is  the  chunking  time  step  length.  In

bimanual manipulation tasks, chunking allows the network to
better  capture  the  non-Markovian  behaviors  from  human
demonstrations,  effectively  reducing  the  accumulation  of
compounding  errors  by  folding  episode  length.  As  shown  in
Fig.  5,  action  chunking  actually  shortens  the  episode  length.
The  imitation  gap [24] between  the  agent  policy  and  the
expert policy is bounded by
 

|S|T 2

N
(3)

S T
N

T

where  is  the  state  space  for  the  task,  represents  the
episode  length,  and  denotes  the  number  of  trajectories  in
the  demonstration  datasets.  With  the  episode  length  being
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Figure 3 Representation  of  swing  angle  in  phase  plane.  For  an  ideal
trajectory,  the  time for  acceleration and deceleration is  equal  to  the  cycle  of
the system, so that the payload will only swing for one cycle.
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folded,  the  bound  for  imitation  gap  decreases  at  a  quadratic
rate  correspondingly.  This  implies  a  better  performance  of
algorithm with action chunking design.

k
Furthermore,  chunking  enables  pre-programming  control

actions for the next  time steps, rather than reacting to errors
after  they  occur.  This  proactive  control  approach  aligns  with
the  principles  of  manual  anti-swing  operation,  where  crane
operators  must  anticipate  and  reverse  the  control  handle  in
advance.  By  applying  the  ACT  algorithm,  the  agent  can
effectively  model  the  complex,  nonlinear  crane-payload
system through deep learning training. This enables the agent
to predict  potential  swings and preemptively counteract  them
by pre-programming control action sequences. As a result, the
algorithm not only anticipates the onset of oscillations but also
takes  corrective  actions  in  advance,  minimizing  the  need  for
reactive adjustments during the crane operation.  

C.  Implementation of ACT in Anti-Swing Task
The  ACT  algorithm  utilizes  a  conditional  variational  auto-

encoder  as  the  core  structure  of  its  model,  because  this
generative approach is well-suited to capture the variability in
decision-making  from  noisy  human  demonstration  data.
Human  operators  often  produce  different  trajectories  when
face  with  the  same  task  due  to  the  inherent  uncertainty  and
complexity of their decision processes. By using a generative
policy  network,  the  CVAE  enables  the  model  to  output  the
most  appropriate  action  sequence  under  a  given  observation,
effectively  imitating  human  flexibility  while  ensuring  robust
and efficient control.

z
xd − x

ẋ
z

z

The  ACT  algorithm  incorporates  a  transformer-based
architecture, which is highly effective for modeling sequential
data  with  long-term  dependencies.  When  combined  with  the
CVAE  structure,  the  encoder  of  transformer  can  efficiently
capture  high-dimensional  features  from  the  input  action
sequences,  while  the  decoder  can  accurately  reconstruct  and
generate  control  actions  based  on  the  conditional  input.  The
overall  structure  of  our  implementation  of  ACT  model  is
shown  in Fig.  6.  Specially,  the  ACT  encoder  consists  of  a
transformer  module  that  processes  the  embeddings  of  partial
observations  and  action  sequences  to  output  the  mean  and
standard deviation for the latent style variable . For the crane
anti-swing task, we use the position error of trolley  and
velocity  as the partial observation. Unlike the original ACT
model,  sample  only  using  the  first  token  of  the  output
sequence,  implementation  averages  all  output  tokens.  This
adjustment  ensures  that  information  from  the  entire  input
sequence  is  retained,  addressing  the  potential  issue  of  losing
critical  data by relying solely on the first  token.  The decoder
for  ACT  employs  a  full  transformer  model.  The  encoder
processes  the  observations,  and  its  outputs  are  passed  to  the
transformer  decoder  through  a  cross-attention  mechanism.  A
fixed query embedding sequence is fed to the decoder in order
to  acquire  embeddings  of  the  reconstructed  action  sequence.
The  embedding  sequence  is  further  projected  to  the  final
action sequence through a linear layer. We obtain feedback on
the  swing  of  payload  via  image  data,  processed  into
embedding  vectors  using  a  convolutional  neural  network.  In
our  implementation,  we  utilize  ResNet18 [25] to  extract
feature  vectors  from  the  image  inputs.  During  the  inference
stage, only the decoder is utilized. The latent style variable 
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Figure 5 Action chunking in Markov decision process (MDP). Conventional
MDP models only take one action for each step, resulting in a long episode.
Action chunking takes a sequence of actions for each step, effectively limiting
the episode length.
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zFigure 6 Structure  of  ACT model.  The ACT encoder  takes  the  partial  observation as  the  input  and outputs  the  style  variable .  The ACT decoder  takes  the

embedding of observation and the style variable as the input and outputs the predicted action sequence.
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is  set  to  its  mean  value,  typically  zero,  to  generate  the
prediction with the highest likelihood.  

D.  Training of ACT
The  training  process  of  ACT  algorithm  in  the  crane  anti-

swing  task  follows  a  supervised  learning  framework.  The
dataset  consists  of  pairs  of  crane  states  and  corresponding
control action sequences. The total loss function is composed
of  two  key  components:  the  reconstruction  loss  and  the
Kullback-Leibler (KL) divergence.

ât:t+k

at:t+k

The primary objective of the ACT algorithm is to minimize
the  difference  between  the  predicted  control  action  sequence
and  the  expert  demonstrations.  The  reconstruction  loss
achieves  this  by  penalizing  discrepancies  between  the
predicted  action  sequence  and  the  ground  truth  action
sequence . For crane anti-swing task, whose action space
is continuous, the mean square error
 

Lreconst =MSE(ât:t+k,at:t+k) (4)
is used to measure this difference.

N(0,1)

The  KL divergence  measures  how much  the  learned  latent
distribution  deviates  from  a  prior  distribution,  typically  a
standard  normal  distribution .  The  KL  divergence
ensures  that  the  learned  distribution  stays  close  to  the  prior,
preventing  the  latent  space  from  overfitting  to  specific  data
points.  More  importantly,  it  regularizes  the  latent  space  and
enables  the  decoder  to  generate  action  sequence  with  fixed
latent input. In our implementation, the KL divergence is
 

Lreg = DKL
(
qϕ (z | at:t+k, ōt)∥N(0, I)

)
=

− logσϕ+
σ2
ϕ+µ

2
ϕ

2
− 1

2

(5)

qϕ ϕ σϕ µϕ
z ōt

where  is the encoder model with parameter ,  and 
are  the  standard  deviation  and  the  mean  value  of ,  and 
represents the partial observation, respectively.

The  total  loss  function  is  a  weighted  sum  of  the
reconstruction loss and the KL divergence
 

L =Lreconst+βLreg (6)
βwhere  is  a  hyperparameter  that  balances  the  trade-off

between  accurate  action  reconstruction  and  regularization  of
the  latent  space.  The  pesudocode  of  training  procedure  is
shown in Algorithm 1.
  
Algorithm 1　 ACT training

D k βInput: Training dataset , chunking length , and weight 
qϕ1: Initialize encoder model 
πθ2: Initialize decoder model 

n = 1,2,3, . . .3: for iteration  do
D at:t+k ,ot4: From  sample 

µϕ, σϕ← qϕ(at:t+k , ōt)5: Encoder output 

z ∼ N(µϕ,σ2
ϕ)6: Sample 

ât:t+k ← πθ(z,ot)7: Decoder output 

Lreconst =MSE(ât:t+k ,at:t+k)8: 

Lreg = DKL
(
qϕ (z | at:t+k , ōt)∥N(0, I)

)
9: 

L =Lreconst +βLreg10: 

ϕ and θ L11: Update model weight  to minimize 
12: end for
  

IV.  Experiment

In  this  section,  we  perform  experiments  on  our  proposed
crane  anti-swing  algorithm  in  simulated  environment.
MuJoCo [26] is used as the phyiscal engine for our simulation
platform.  We  employ  PyTorch  as  the  deep  learning
framework, with which we build, to train and test our models.  

A.  Simulation Setting

kg
kg
m/s

In  our  experiments,  we  use  MuJoCo [26] as  the  phyiscal
engine  to  simulate  the  overhead  crane  system.  The  system
parameters  are  closely  aligned  with  those  of  a  real-world
bridge crane.  The trolley has a  mass of  2000.0 ,  while  the
payload weighs 373.3 . The rope length is set to 1.65 m. Its
maximum velocity is 2 . The high-level control algorithms
interact  with  the  crane  through  a  velocity  control  interface,
implemented  via  an  inner-loop  velocity  PID  controller.
Additionally, a camera is mounted at the bottom of the trolley
to provide image feedback of the payload.  

B.  Dataset and Training Detail
We utilize  the  trajectory  and  PID-based  anti-swing  control

algorithm  to  generate  demonstration  data  in  simulation
environment.  For  each  episode,  the  destination  point  is
randomly  selected  within  a  range  of  10–20  m.  Totally,  we
collect 100 episodes of demonstration data, which are divided
into 130,256 observation-action sequence data pairs.

When training  models,  the  learning  rate  and  batch  size  are
set to 0.0001 and 256. Adam optimizer is utilized to optimize
the weights for 70 epochs on the demonstration datasets.  

C.  Experiment in Simulated Environment

xd

The proposed embodied crane anti-swing algorithm is tested
in  simulated  environment.  In  simulated  experiments,  the
destination  is  set  to  16  m.  For  comparison,  we  also
implement  three  conventional  anti-swing  control  methods  in
simulations. The resulting swing angle and position curves are
plotted  in Fig.  7.  The  key  performance  indicators  for
evaluating anti-swing control are the maximum transient (MT)
and  residual  swing  (RS) [3].  Additionally,  the  efficiency  of
each method is assessed by measuring the time spent (TS) to
complete  the  movement.  The  summary  of  these  performance
metrics is  provided in Table 1.  Judging from the results,  it  is
clear  that  the  imitation  learning  based  anti-swing  algorithm
outperforms other methods in terms of suppressing maximum
transient  and  eliminating  residual  swing.  The  residual  swing
performances  for  different  anti-swing  algorithms  are  also
visualized in Fig. 8. Conventional anti-swing algorithms may
lead  to  residual  swing  of  payload,  which  may  be  harmful  to
the  operation  effiency  and  safety  of  crane.  Our  algorithm
manages  to  eliminate  the  residual  swing.  Notably,  the
maximum  swing  angle  achieved  is  even  smaller  than  that  of
the algorithm used to generate the demonstration data. Thanks
to the deep neural network, the agent can better deal with the
non-linearity  and  predict  the  motion  of  payload.  The  action
chunking  design  allows  the  agent  to  predict  the  response  of
crane  system  and  take  preemptive  actions,  reducing  the
maximum swing angle.  
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V.  Conclusion

In  this  paper,  we  propose  a  novel  embodied  anti-swing
control  algorithm  for  overhead  cranes  through  the  imitation
learning  method.  We  first  combine  closed-loop  PID  control
and  open-loop  trajectory  planning  to  effectively  generate
demonstration  data  in  simulated  environment.  Basd  on  the
collected  data,  we  employ  imitation  learning  in  crane  anti-
swing  task  via  ACT  algorithm.  Action  chunking  is  used  to
tackle the accumulation of errors. The CVAE and transformer
model  are  utilized  to  model  the  mapping  from  observations
and  action  sequences.  Experiments  conducted  in  a  simulated
environment  demonstrate  the  effectiveness  of  our  proposed
algorithm.

However, the imitation learning agent is trained exclusively
on  data  generated  in  the  simulation  environment.  Future
research  will  require  real-world  human  expert  demonstration
data.  Additionally,  anti-swing  control  is  just  one  aspect  of
crane  automation.  In  the  future  work,  we  aim  to  extend  this
research  to  achieve  full  automation  of  crane  operations  via
imitation learning.  
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Figure 7 Swing  angle  and  position  curves  for  imitation  learning  based  anti-
swing  algorithm.  The  swing  angle  curve  plot  is  tailored,  so  that  the
advantages of our algorithm can be well presented.

 

Table 1 Performance indicator of the experiment. Bold indicates the
optimal result.

Method MT (rad) RS (rad) TS (s)

PID 0.4720 0.0003 17.975

Planning 0.1706 0.0153 11.438

Planning + PID 0.0848 0.0001 15.647

ACT (ours) 0.0757 0.0000 16.587

 

(a) PID (b) Planning (c) ACT (ours)
 
Figure 8 Residual  swing  for  different  anti-swing  methods.  The  green  boxes
represent the trolleys of cranes and the grey boxes are the payloads.
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