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Multi-Objective Optimization for
Wave Energy Converter Based on
Robust-Stochastic Control for Uncertainty and
Dynamic Order Adaptive Runge-Kutta

Runhao Liu and Ziming Chen

Abstract—To optimize the energy output of wave energy
converters (WECs) in complex ocean environments, a novel
multi-objective  robust-stochastic strategy that integrates
uncertainty modeling to address the dynamics of ocean waves is
presented. We introduce the dynamic order adaptive Runge-
Kutta (DOARK) method for more efficient solution of Kkinetic
equations. The optimization strategy seeks to maximize power
output while minimizing systematic damage. First, we develop
kinetic formulations for the proposed WEC and incorporate
stochastic terms for a more accurate description in volatile
conditions. The control process is optimized using a multi-
objective approach with a cost function that balances output
power and damage, solved via the c-constraint method. An
adaptive algorithm is applied to adjust step size, enhancing the
Runge-Kutta method. In our approach, step size is iterated based
on damping coefficient ranges. Simulation results demonstrate
that the proposed strategy improves output power by 12.34% and
reduces systematic damage by 15.65%, compared with traditional
methods, which demonstrates the advantage of the proposed
method.

Index Terms—Wave energy converter, uncertainty modeling,
dynamic order adaptive Runge-Kutta, robust-stochastic control,
multi-objective optimization

I. INTRODUCTION

NERGY is an essential demand for the development

of the global economy. Meanwhile, efficient

economic increase relies on sufficient energy
utilization. However, many countries are facing challenges
including depletion of fossil fuels and environmental
pollutions [1]. Without the solution of these obstacles, the
economy will be trapped in a standstill. Therefore, the use of
renewable energy evokes keen attention around the world.
Wherein, the marine renewable energy, wave energy in
particular, is one of the most prospective renewable energy
with extensive potentials in the economic development [2].
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Based on surveys, the theoretical usable resource of wave
energy is estimated nearly 32,000 TWh/year [3]. Furthermore,
the average of the densities of wave energy is estimated
2.00-3.00 kW/m?2 while the solar energy and wind energy are
0.17 and 0.50 kW/m?2, respectively [4]. Therefore, as a widely-
used tool in wave energy collection, the wave energy
converters (WECs) can provide a significant portion of
converting the wave energy into power output [5]. To capture
energy more efficiently, control optimizations are accessible
enhancement without excessive extra cost. Nevertheless, the
interference of volatile waves can be one of the most crucial
challenges, which may cause unacceptable systematic
damage. Meanwhile, volatile waves cause more kinetic
motion, which leads to more energy output. Therefore, the
comparison between the energy output and systematic damage
is a problem to overcome.

Recently, much attention has been paid to the novel physical
modifications of WECs to overcome the problems in unstable
ocean. To cope with the uncertainty, establishing models with
interference is proved as a valid method. Aderinto and Li [6]
proposed a self-adjustable wave energy converter that altered
its inertia by ballasting and de-ballasting with seawater.
Clemente et al. [7] developed and assessed a wave energy
conversion technology which could be integrated into seaport
breakwaters. Devin et al. [8] designed a pitch resonator power
take-off (PTO) system using a geared flywheel system for
power generation. Al Shami et al. [9] proposed a novel wave
energy harvester using a Scotch Yoke mechanism to convert
the heave motion of a buoy into rotational energy for an off-
the-shelf rotary generator. In Ref. [10], a multi-dimensional
wave energy converter that realizes wave-to-power via 6
parallel hydraulic cylinders is proposed. Zhang et al. [11]
constructed a multi-degree of freedom decoupled WEC and
performed optimization in varying wave conditions.

Simultaneously, the development of new optimization
strategy for WEC is crucial for a more accessible wave energy
utilization. Owing to the characteristic of non-linear and
unstable characteristic of waves and marine environment,
wave energy output is unpredictable for long time-horizons.
Avila et al. [12] proposed a mixture density network-based
method for forecasting the capabilities of WEC at offshore
and nearshore points, which fitted bivariate Weibull
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distributions to spectral significant wave height and mean
peak period data. Adibzade and Akbari [13] presented a
transfer function (TF) over a desired range of wave
frequencies to assess multi-body floating wave energy
converter (MBFWEC) operating, which could be deployed in
complex sea states. Fan et al. [14] proposed a model to
simulate the entire process of waves to power grid of the
WEC with a controllable-valve buoy. This method can
evaluate the power generation capabilities of WEC under the
complex sea conditions. In Ref. [15], the wave roller and
oyster WEC are improved by the wave tower wave surge
converter to reduce area of effect. Quilodran-Casas et al. [16]
proposed a machine learning based synthetic data generated
method for WEC performance evaluation. This method can
have a speed up from 5 to 6 orders of magnitude for the new
samples production. Adibzade and Akbari [17] evaluated the
energy output of multi-body floating wave energy converters
in complex sea states with multi-peak wave spectra with a
two-dimensional (2D) transfer function based innovative
method. This method prevails in multi-directional sea states
and the function of wave directionality in power calculations
is highlighted in this work. To deal with the challenge of
optimizing the efficiency of WEC on a regional scale,
Mehdipour et al. [18] developed a hill climb-explorative grey
wolf optimizer, which was a hybrid algorithm combining local
search and swarm-based global optimization strategies. Zhang
et al. [19] proposed a chaos-based differential evolutionary
algorithm for evaluating the optimal buoy arrangement
effectively and promptly. This algorithm consists of
excavation, balancing, and recycling layers, which is a three-
layer information structure. Compared with four traditional
mainstream algorithms, a real-time controller method is
developed by Zhang et al. [20]. The method integrated with a
long short-term memory recurrent neural network wave
prediction model, which is more compatible under irregular
waves. Xu et al. [21] proposed a numerical model based on 6
degrees of freedom for enhancing energy conversion
efficiency of WEC and analyzed the effect of 9 types of
motions.

The Runge-Kutta (RK) method is highly precise, stable, and
capable of handling non-linear systems, making it suitable for
complex wave dynamics in WEC research [22]. Runge-Kutta
is highly emphasized in the research of wave energy. Liu et al.
[23] integrated Runge-Kutta fourth-order (RK-4) method to
solve the response and capture performance of the evaluation
of mean annual capture width ratio capacity of the oscillating
wave surge converters in the situation that the wave was
irregular. Mirzaei et al. [24] discretized the boundary
conditions with RK-4. He et al. [25] proposed a weighted RK
discontinuous Galerkin method and extended this method to
solve the elastic wave equations in 2D transversely isotropic
media. Chen et al. [26] proposed an RK-4-based solution
method to solve the motion equations of WEC.

Taking the irregular ocean environment into consideration,
the multi-objective optimization is required to realize a trade-
off of multiple elements for non-linear problems [27].
Hoffmann et al. [27] introduced a multi-objective model
predictive control approach for WEC based on dielectric

elastomer generator, whose order was to maximize energy
harvested from ocean waves while minimizing the damage
accumulated by the dielectric elastomer generator. Carapellese
et al. [28] proposed a dynamic analysis and performance
assessment of the inertial sea wave energy converter with
nonlinear model to achieve energy-maximizing control and
energy absorption improvement. Cheng et al. [29] presented a
hybrid WEC that integrated an oscillating water column and
an oscillating buoy, which was installed within a m-type
floating breakwater to enhance the hydrodynamic
performance. Shadmani et al. [30] utilized two primary
objective functions of energy production based on wave
conditions and the layout of WEC arrays for reducing
interference between the devices to improve global efficiency.
Cheng et al. [31] explored the feasibility of integrating very
large floating structures with multiple WECs combined with
oscillating water columns and oscillating flaps. Additionally,
Gu et al. [32] concentrated on the optimization of cost and
emission. Rahimi et al. [33] paid attention to the two-objective
optimization of the WECs’ dimensions and the power PTO
parameters. By adjusting the production torque within the
PTO, Vakili et al. [34] optimized the energy efficiency of
Pelamis WEC. Based on survey, multi-objective optimization
plays a crucial role in addressing the complex non-linear
optimization problems of WECs by balancing conflict
objectives.

The surveyed literature reveals that while physical
modifications show promise, their high complexity and cost
hinder practical use. Recent optimization strategies focus on
multi-dimensional objectives, but neglect the impact of
volatile wave conditions, highlighting the need to consider
non-linear and unstable factors. We address these issues by
introducing stochastic perturbation elements to improve
system dynamics under uncertainty. Hybrid robust control
strategy and frequency domain analysis are used to assess
uncertainty impacts. Additionally, the RK method’s accuracy
needs improvement, and existing models largely assume
predictable, periodic wave motion, overlooking the instability
of ocean environments, especially in harsh weather regions.
Recent researches have emphasized the significance of
dynamic optimization [35]. Therefore, to balance accuracy
and cost, we propose a dynamic order adaptive Runge-Kutta
(DOARK) approach, which adjusts step size and order. A
multi-objective robust-stochastic strategy is also introduced to
mitigate damage from environmental complexity, solving the
stochastic multi-objective problem and selecting the optimal
trade-off via a fuzzy membership function. The highlights of
this paper are summarized as follows:

(1) Stochastic perturbation term is concluded in the model
for comprehensive consideration about uncertainty for
depicting the output of energy more accurately. Thus, our
proposed model will be more suitable for complex ocean
environment.

(2) The DOARK is developed to solve the model, which
realizes the mechanism for dynamic orders selection. Step
with different sizes in scenarios with different volatility is
adapted and the errors will be reduced in iteration process.

(3) A multi-objective robust-stochastic strategy is conducted
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for the simultaneous optimization of the maximum of output
power and the minimum of systematic damage. Meanwhile,
the proposed strategy is capable of controlling the parameters
concerning the systematic damage. This method minimizes
the total systematic damage and mitigates the effect of the
uncertain parameters.

The rest of this paper is as follows. Section II describes the
mathematical model of our proposed WEC, including the
description of kinetic motions and the energy output.
Meanwhile, the model integrated with uncertainty is
constructed in detail. Section III presents methods for
searching the numerical solution for the established model.
The improved DOARK is constructed in Section IV, as well
as our multi-objective robust-stochastic optimization strategy
is introduced. The results of simulation are also demonstrated
in Section IV for evaluating the effect of model with
uncertainty and the DOARK. Finally, Section V presents
some final remarks and conclusions.

II. PROBLEM FORMULATION

Our proposed WEC is depicted in Fig. 1. The proposed
WEC contains buoy, vibrator, central shaft, and power take-
off system. The PTO unit is integrated with a permanent-
magnet linear generator with a rotary damper. Incident waves
excite coupled heave and small amplitude pitch of the buoy.
These motions are transmitted along the shaft to the vibrator,
in which the relative translational and rotational displacements
drive the PTO and are directly converted into three phases
electrical power. The hydro mechanical dynamics are
represented by a four-degree-of-freedom model incorporating
buoy mass and added mass, hydrostatic restoring stiffness,
frequency-dependent radiation damping, and a time-varying
PTO damping coefficient c(¢). Although energetic sea states
increase instantaneous power extraction, they also elevate
structural loads and promote cumulative fatigue damage.
Consequently, the control objective considered in this work is
to schedule c(f), so that the mean absorbed power is
maximized while the damage remains below its permissible
threshold, thereby achieving an optimal compromise between
energy yield and structural integrity.

Figure 1 Overall structure of the proposed WEC model.

III. MODELING

A. System Modeling

When the WEC is floating on the water, it is influenced by
hydrostatic recovery force, which is the restoring force that
automatically acts on an object to push it back to its original
equilibrium attitude after being pushed away from its
equilibrium draft position by an external force because of an
imbalance in the moments generated by buoyancy and gravity.
The hydrostatic recovery of buoy F is shown in Egs. (1) and

).
F1=F,—-(Gi1+G2) =V(x1,)g (D

TRx1 4, X1 <2.0;
21 +0.52n(2.8 — x1,)°,2.0 < x;, <2.8

where F» is the buoyancy, R is the radius, and G| and G, are
the gravities of vibrator and buoy, respectively. The x, is the
replacement of buoy. The wave exciting force is also included
in the motion of WEC. Note that f represents amplification,
and w represents the incident wave frequency, and ¢ is time.
Thus, the wave exciting force is shown in F3.

V(xiy) = { 2

F3 = fcos(wt) 3)

The wave-making resistance on the float is the resistance

caused by the ocean wave when the buoy is moving in a

pendulum motion, which is proportional to the velocity of the

floating body pendulum swing and opposite in direction. The
wave-making resistance F4 is given by

Fa=q-vy, “)
where ¢ is the resistance coefficient and v, is the move
speed. Not only will the buoy be pushed by the forces, but the
surrounding fluids also need to be moved. The force that
drives a floating body in a rocking motion must not only drive
the floating body in motion, but also the fluid around the
floating body. If the floating body is to gain acceleration in the
waves, an additional force needs to be applied, i.c., an
additional inertial force mj3, therefore, the force of added mass
Fs is given as
dle,,

i ®)
The oscillator is in reciprocating motion along the central
axis, always with a spring attached to one end, which exerts a
force during the pendulum motion. The amount of this force is
proportional to the difference in displacement of the buoy and
the vibrator. The magnitude of the elastic force exerted on the
vibrator F is shown in Eq. (6).

Fe = ki(x1,:— X2, + X0) (6)
where xp; is the displacement of the vibrator, and xo
represents the initial spring compression. The spring
coefficient is written as k;. When the vibrator and the buoy
move relative to each other, the linear damper produces a
damping force, which is proportional to their relative velocity.
Thus, the damping force F7 is expressed as

Fs=mj3

Fr=ky-(vig—vas) @)
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where the damping coefficient of the linear damper is written
as kp. The movement speeds of the buoy and vibrator are
denoted as vy, and vo, respectively.

Under the action of waves, the buoy not only undergoes
vertical oscillations, but also experiences longitudinal motion
from side to side. At this moment, the central axis of the buoy
is subjected to the moment of force exerted by the waves. In
this more complex scenario, the determination of the buoy’s
center of gravity becomes necessary. As illustrated in Fig. 2,
the center of gravity O is located on the central axis, as both
the buoy and vibrator are rotational bodies. Denote the heights
of the conical and cylindrical sections as H; and Hj,
respectively, and the height of the vibrator as Hz. We
introduce h4 as the distance between point O and the top of
the conical and cylindrical sections, while hs represents
another relevant height parameter. Let m; and m, denote the
masses of the buoy and the vibrator, respectively.
Furthermore, the masses of the conical and cylindrical
sections of the buoy are given by my4 and ms. Consequently,
the center of mass of the buoy is determined as Eq. (8).

h = hy-my—hs-ms (®

Based on the equilibrium axis theorem, the moment of
inertia Jy4 is given by

Ja=Jy+Jo+my-hy+ms-hi

©)
where J; and J, are the moments of inertia of the cylindrical
and conical parts, respectively.

Equation (10) describes the moment of inertia of the
vibrator. When the vibrator has a straight-line mass
distribution along its center of mass axis of gyration, its
moment of inertia J5 is given as

_m ( 2, 1 2)
Js=—|r"+—H;

> 5 (10)

where r is the radius of the vibrator.

The vibrator undergoes longitudinal oscillation around the
bottom rotating axis, which is located on the interface surface
and is parallel to the rotating shaft frame. Given that the
height of pedestals and rotating shaft can be neglected, the
distance between the center of gravity and the center of the
circular interface, denoted as /, is expressed as

Figure 2 Schema of the structure of buoy and vibrator.

(11)

Hj
I'= X2 = x1,1+ X0 + a5

where xgo represents the original length of the spring.

By applying the parallel-axis theorem, a more precise
representation of the vibrator’s moment of inertia Jg is
obtained.

Jo = Js+mpl (12)

Finally, the hydrostatic recovery moment of the buoy My, is
given by

M = cne - 0 (13)
where the angular displacement between the axis of the
vibrator and the buoy is denoted as 6, while 6, represents the
angular displacement between the plumb line and the axis of
the buoy. Additionally, the coefficient of the hydrostatic
recovery moment is denoted as cy;.

The oscillatory motion of the wave energy converter is
driven by the wave-exciting force F3 and the wave-exciting
moment My, which is expressed in Eq. (14).

My = Lcos(wt) (14)

where L is defined as the amplification factor of the
oscillatory motion.

When considering the oscillatory motion, the moment of
wave-making resistance cannot be ignored because of the
resistance caused by waves, which opposes the oscillatory
motion of the floating buoy. The moment of wave-making
resistance is proportional to the angular velocity of the float’s
oscillation. Synonymous with the force described in Fy4, the
moment of wave-making resistance, denoted as Mwwmr, acts
in the opposite direction to the angular velocity of the buoy
wi. This moment also has a proportional coefficient g;. Thus,
Mwwmr is defined as

MwwmR = q2 - Wi (15)
As for the oscillatory motion of the WEC, the torque of the
rotary spring MtRs is given by

Mrrs = k3(61 — 62)
where k3 represents the stiffness of the rotary damper.

Similar to F7, the torque of the rotary damper Mtrp is
defined as

(16)

Mrp = ka(wi —w2) (17)
where k4 is the damping coefficient of the rotary damper, and
wy is the velocity of the vibrator.

When the buoy undergoes longitudinal oscillatory motion,
the spring tilts. Consequently, the pressure exerted by the
object on the spring is reduced, effectively creating an
upward-tilted force pulling the spring upward. The force in the
vertical direction is analyzed by decomposing it orthogonally
into the force equation of the pendulous oscillatory motion.
The elastic force of the spring F¢ is defined as

F¢ = mg—mgcos (6 +62) (18)

When the vibrator and buoy are in longitudinal motion, the
damping force is tilted instead of acting purely in the vertical
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direction. In this case, the damping force of the vibrator F7
follows

Fl=—Fy (19)

Based on the analysis of mechanical forces, a system of
equations for dynamics is formulated. First, the motion of the
buoy is described by Egs. (20) and (21), considering only the
pendulum motion. The floating buoy is influenced by wave-
exciting force, wave-making resistance, hydrostatic recovery
force, and buoyancy. The two equations below indicate that
the acceleration of the floating buoy is affected by the
variation of buoyancy with depth.

d2x1 ¢ dxq
(my +m3) =7 = feos(wn) —c—g= = Vix)pg  (20)
where the buoyancy function V(x,) is defined as
2 3
Vix) = gn(Z.S -x14)7,2.0<x1,;,<2.8; @

0, otherwise

where ¢ represents the general resistance coefficient.

For the vibrator, the effects of gravity, spring force, and
damping force are considered. The gravity counteracts the
initial spring force, which allows the system to be simplified
by assuming that the original length of the spring remains
unchanged over time, and gravity does not contribute to the
vibrator’s motion. Thus, Eq. (22) represents the dynamic
equation governing the motion of the vibrator, emphasizing
the interaction between the floating buoy and the vibrator
through the spring coefficient and the damping coefficient of
the linear damper.

dzxz,t dxz; dxp,
dr? e dr ) 22)

In the scenario that only pendulum motion is considered, the
buoy and vibrator move vertically, and their initial positions
are at the origin. This study assumes that both objects are
floating on the water, so their initial velocity is zero.
Consequently, the simultaneous equations describing the
initial conditions of displacement are given as

xl,[(o) = 07
xZ,I(O) = O’

dx0) o

dr
dxz,t(o) -0

dr

These overall equations are obtained by applying Newton-
Euler balances to the heave-pitch motions of the buoy and the
surge-roll motions of the internal mass. Their inertial
contribution is merged the structural mass with the frequency-
dependent added mass. Then, the harmonic wave-excited
force or torque, and the velocity-proportional terms are
superposed to account for radiation damping and PTO
damping effects. Meanwhile, their displacement-proportional
term is used to represent hydrostatic restoring force. The
relative displacement and velocity terms are conducted to

my =~k (x2, _xl,t)_kZ(

(23)

express the coupling spring and damper between the buoy and
the vibrator. These contributions form a set of four coupled
second-order differential equations providing the complete
dynamical model of the WEC system.

One of the primary contributions of this work is the
introduction of minor perturbations into the model to account
for uncertainty. To analyze the system’s response to small
perturbations, a linearization process is applied. The
perturbation terms are defined as dx;, and 6x;;. Accordingly,
the perturbed equations are given by

{Xu = x1,0 +0x1,, (24)

Xop = X2,0+0Xx2,;

Substituting Eq. (24) into Eqgs. (20) and (22), the system is
linearized, yielding Eq. (25)

& d
(my 4 m5) =5 = feos(@i) = =" —ki(6x2, =631,
d*(dx2,) d(6x2,1)  d(6x1,1)
m—ag = —k1(6x2, = 6x1,1) —k2 (T " Ta

(25)

For further analysis of the robustness of the proposed WEC
system, a frequency domain analysis is conducted. Based on
the Laplace transform, the transformation function is
constructed, leading to the auxiliary Eq. (26). Here, s
represents the complex number of frequency response. The
coefficient ¢ denotes the resistance coefficient, which
accounts for the effect of resistance when the system moves
with water. The transformed displacements of the floating
buoy and vibrator, denoted as X ,(s) and X2 (s), respectively,
are expressed using the Laplace transform.

Xl,t(s) _
[xz,m =0

Thus, this modification enables a more comprehensive
consideration of the equilibrium and stability of the system,
enhancing the model’s robustness against perturbations and
improving its accuracy in reflecting the real physical behavior.
For instance, the system response characteristics can be
optimized by adjusting parameters k; and k; to ensure the
stability of the proposed system. Furthermore, the dynamic
behavior of resonant frequency additions can be investigated
through parameters f and w. Additionally, the auxiliary
equation formulated for frequency domain analysis is
fundamental for studying resonance phenomena. Therefore,
the proposed model, which incorporates minor perturbations
and linearization, provides a more comprehensive
understanding of the coupling dynamics between the buoy and
the vibrator.

Based on the kinetic models established above to describe
the pendulum motions of the proposed WEC, oscillatory
motion must be considered for further analysis of factors, such
as wave force, gravity, and buoyancy. Herein, ¢; is utilized
to represent the resistance coefficient in corresponding
situations. The influence of waves acting on the buoy and
vibrator is modeled as two disturbance terms, D; and Dj,

—k

(my +m3)s®+cs+ki
[ m252+k2 (26)

—ky
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respectively. Consequently, the kinetic equations governing
the motion of the floating buoy and vibrator are given by

d
(1 +m3) = = feos(@i) = c1 = = V(1 )pg+ Dy
27)
dzxz,,
m—a = mag(1 —cos(61 —62))—
ki(x2, = x1,0- (28)

dr dr

The corresponding phase constant ¢; is incorporated into
the model. Thus, the disturbance terms are defined as

{Dl = Daysin(kixy s — wy1t+ 1),
Dy = Dppsin(koxp; — wyot + ¢2) + Dry

d d
kz( X2t _ x1’1)+D2

29

where Dy is the amplitude of the buoy’s motion, and Da»
corresponds to that of the vibrator. Meanwhile, w,,; represents
the effect of the wave frequency on different components of
the system. D; represents primary harmonic component of
incident wave group acting on the buoy and D, is the
combined effect of transmitted wave load plus in-body
hydromechanical noise.

It is important to note that the primary disturbance acting on
the floating buoy can be fully explained by wave harmonics.
However, the vibrator is not only influenced by wave forces,
but also by the motion of the buoy, as it is placed within the
buoy’s interior. Therefore, based on the mechanical force
analysis, an additional noise component Dr; must be
considered, where Dy ~ N (0, 02).

To more accurately characterize the state of the system in
oscillatory motion, the relative inclination between the buoy
and vibrator, caused by wave energy, is described as

D
80, = % sin(ka61 — wy1t+¢1),
4
(30)
Dp> .
56, = . sin(k30, — wyot + ¢2)
3

When the motion of the WEC exhibits both pendular and
oscillatory behavior simultaneously, incorporating uncertainty
and dynamic changes, the kinetic equation governing the
oscillatory motion of the vibrator is transformed into

d?6, , dg, do,
12d7 = —mygsin(6>) —k3(62 —61) —c3 (E “a )t Ds;
(31
where the disturbance term Dj is defined as
D3 = Da3sin(k362 — w3t + ¢3) + Dr3 (32)

where D3 represents the vibrator’s amplitude of motion.
Similarly, we assume that the perturbation term Drj3 follows a
standard normal distribution. For the same reason, the kinetic
equation governing the floating body is given by

2 de,

d 01 . d62
Jl? = —mygsin(6;) — k4 (6, —‘92)—04(3 - E)+D4
(33)

where the disturbance term Dy is defined as

Dy = Dagsin(ks0) — wyat + ¢4) + Dry (34)
where Da4 represents the amplitude of motion of the buoy.
Thus, the uncertainty simulated by D3 is wave-induced
overturning moment superposed with internal gearbox
torsional jitter, while the restoring-moment fluctuation
because of short-crested seas and slamming is simulated by
Dy.

In the present model, stochastic disturbance terms D to Dy
are introduced to represent environmental uncertainty in a
physically consistent and statistically calibrated manner. Each
term acts on a specific degree of freedom, which includes
buoy heave D;, vibrator heave D,, vibrator pitch D3, and
buoy pitch D4. They are constructed from the first to the
fourth dominant harmonics extracted from the measured
wave-elevation spectrum. The harmonic amplitudes and
phases are treated as zero-mean Gaussian random variables of
which standard deviations scale with the significant wave
height, while a small frequency perturbation is added to the
pitch-related terms to capture short-crested sea effects. This
formulation introduces multi-scale stochastic excitation
without altering structural parameters, allowing the model to
reproduce the statistical characteristics of both moderate and
extreme sea states within a computationally tractable
framework.

On this basis, we define a randomized interference term D,
to simulate the uncertainty in territorial waters under complex
conditions, such as severe weather, unpredictable ocean
currents, and varying wave frequencies. Herein, D represents
the scalar factor used to control the intensity of stochastic
perturbations. The randomized interference term D, is
modeled as a combination of random variables obeying a
normal distribution N (0,0'3), as formulated in Eq. (35).

Dy =D -N(0,0%) (35)

Overall, we introduce the randomized interference term D,
into the kinetic equations of the floating body and vibrator.
The simultaneous equations governing both pendular and
oscillatory motion in the proposed WEC system are given in
Eq. (36).

In specific, D, is an unstructured disturbance term
introduced to capture broadband environmental effects that
are not represented by the harmonic terms D; to Dy4. It
aggregates high-frequency wavelets, gust-induced pressure
fluctuations, residual hydrodynamic interactions, and sensor
noises. Mathematically, D, is modelled as a zero-mean
Gaussian process applied additively to each state equation. Its
standard deviation is obtained from the residual energy of the
measured wave spectrum after the first four peaks are
removed and is further scaled by the scenario-dependent
significant wave height. This formulation reproduces the
stochastic envelope and rare high-intensity transients
characteristic of severe sea states while maintaining numerical
tractability.

The system governing the motion of the proposed WEC
with the inclusion of disturbances is given by
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2 d
(my +m3)— =fCOS(‘”t)_C1ﬂ —Vxdps+
dr dr '
D] +Du —u,
d2x2’[ .
my— 5= = magsin(@) —02) —ky(xo,0 = x1,0)=
dxzt d-xl t
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J2 d 2 = —mygsin(6>) — k3(62 — 61)—
d92 del
———|+D3+D
(m m) T

To enhance the stability of the model under complex
conditions, a hybrid robust control strategy is incorporated.
We develop a hybrid strategy combining sliding mode control
(SMC) and robust control techniques to adapt to real-time
variations and improve responsiveness to disturbances.

Define the state variable z=x»;—x;;, and introduce a
closed-loop control system u. The control parameters k,, c,,
and kq are employed to regulate the system’s response to
disturbances and dynamic variations. Consequently, the
control input u is defined as
+kd

dz
—kaz—ca— o (37)

where u is applied to the relative translational degrees of
freedom between the buoy and vibrator as inner force. The
sign of the inner force appears with opposite values in the two
equations to ensure consistency with the conservation of
momentum. The first two equations in Eq. (36) can be
subtracted to obtain the relative coordinate. As a result, the
second-order dynamics of the relative displacement
z=x3,—x1; can be expressed as 7= _k,z—c,z+kqDy>
corresponding to Eq. (37). u is essentially a realization of the
equivalent spring-damping-disturbance compensation network
in the translational subsystem, and its inclusion does not
change the structure of the rotating subsystem.

A deeper analysis of the system’s dynamic performance in
complex sea conditions is required to assess its robustness and
stability. Herein, the system’s homeostatic behavior is
evaluated based on the Lyapunov stability theory. The
Lyapunov function is chosen to establish the dynamic
performance index as

wmzéf (38)

We derive the Lyapunov function, incorporating the control
strategy to ensure convergence of the system state, yielding
Eq. (39)

. Z
E:z~(z+u)=z- —kaz—caa+deu s
(39)
s.t d—V<0
A

This condition guarantees the system’s stability in complex
sea conditions by selecting appropriate control parameters
from Eq. (37). In other words, the proposed control strategy
ensures the robustness of the system against random
disturbances. For the solution, the initial conditions are given
in Eq. (40).

x1,,(0) =
x2,4(0) = x20,

dx
“(0) =10,

X1,05

dX2 t

(0) V2,0,
01 (0) =
6,(0) =

do
—1(0) w10,

d
—2<0) w20

Thus, by introducing a small perturbation term, the
nonlinear problems involved in this study can be transformed
into linear problems, as described in Eq. (41).

(40)
01,0,

02,0,

X1, = X1,0+0X1,
X2, = X2,0+0X2,
01 =010 +001,
6, = 92’0 + 06>

(41)

By applying the Laplace transform, a frequency domain
analysis of the system is conducted to obtain the transfer
function, as described in Eq. (42).

(my +I/I13)S2+Cls+k1 -k
[ -k mys®+cos+hky
[ X1.4(9) }_[ Di(s)
Xo.(s) | | Da(s)

In this way, the model with uncertainty can accurately
capture the dynamic behavior of the floating buoy and the
oscillator. By incorporating perturbation terms, the model
clarifies the effects of waves and other random factors,
leading to a more comprehensive synthesis of the kinematic
characteristics of the buoy and oscillator. Consequently, the
model is capable of reflecting the dynamic response behavior
of the floating buoy and oscillator more accurately in complex
environments. Moreover, a hybrid robust control strategy is
introduced to enhance the adaptability of the model under
complex sea conditions, significantly improving the model
stability.

The existence of optimal damping has been confirmed by
numerous previous studies. When a resonant pendulum is
subject to damping effects, its orbit shifts to a period-1
rotation, which can be described by a linear positive
correlation between energy output and the damper coefficient.
However, excessive damping can disturb this balance, leading
to small-amplitude oscillations. Therefore, determining the
optimal damping coefficient is crucial. For scenarios with
stable natural conditions, a fixed damper coefficient is simple

(42)
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to apply. However, to accommodate more diverse scenarios, a
dynamic damper coefficient strategy is commonly utilized,
meaning that the optimal damper coefficient is not unique
when modeling the energy output of the WEC.

To address the challenges posed by complex sea states and
unpredictable factors, a dynamic damper coefficient is
deployed. The dynamic damper coefficient influenced by
stochastic interference is modeled as a time-dependent
random variable, denoted as c(¢). Its stochastic interference
term is represented as Ac(f), accounting for changes in
unpredictable environmental conditions and the operational
state of the proposed WEC. Thus, c(¢) is expressed as
c(t)=co+Ac(t), where ¢y 1is the baseline resistance
coefficient. We assume that the stochastic interference term
follows a normal distribution Ac(z) ~ N (0, o-?). Regarding the
output power caused by wave forces applied to the floating
buoy, denoted as Pr, the velocity of the buoy v, is obtained
by differentiating the buoy’s position vy, =dxy,/dt.
Furthermore, the wave force Fy, derived from the kinetic
equation, is used to represent the applied wave force, as
described in Eq. (43). The resistance coefficient is denoted as
¢p. In this context, the randomized interference term is Ac(r)
rather than D,,. The wave force applied to the floating buoy is
defined as

dxb,,
dt
Similarly, let P, denote the wave power of the vibrator,
with the corresponding velocity represented as vy ;. The spring
force F is given by

Fy = fcos(wt) —(co+ Ac(?)) + Dy (43)

dxy; dxp,
~ - — 44
dt dr ) “4)

where x,, and x,, denote the displacements of the floating
buoy and the vibrator, respectively. The parameters kg and ¢y
represent the stiffness and resistance coefficients of the
vibrator.

Thus, the output power P, is the sum of P¢ and P,. The
power-force relationship is clarified as

Fy = ks(xy;—Xp,) — (cy + AC(I))(

Pf = FW . vb,l =
feos(n —(eo+ c) 2t 4 p |- Lo
cos(wt) — —br )
wi) = (co+ Ac)— | =5
(45)
Py=Fs vy, =
dxv dx; X dx\,,
[ks(XV,t —Xp,0) — (Cy +Ac(t))( dt’t - dlt)t )} dtl
Then, the total output power P, can be expressed as
Py=Ps+Py=
f cos(wn — (o + Ac() 22 4 p, | L0t
cos(wt) — )
wt) —(co +Ac iP | @6)
dx dxp dx
[ks(xv,;—xb,t)—(cv+Ac(t))( d:,t - dt’t ) . d‘t’”

Therefore, we establish the mathematical model concerning
the output energy of WEC. The highlight of our proposed
formulation is the inclusion of uncertainty instead of single
energy output calculation, as well as the chronological

complexity is considered, which makes our model more
grounded. As for the case of fixed coefficient, it can be
regarded as a special situation of the dynamic damper
coefficient strategy. What needed to the deployment of the
model is to replace the corresponding parameters by constant.

When maximizing the power generated by the WEC,
systematic fatigue that may damage the system must also be
considered [32]. Therefore, optimizing systematic damage is a
worthwhile endeavor. The friction coefficient is given as
pn=0.01, with the force on the floating buoy in the
perpendicular direction denoted as N. The motion velocity of
the buoy is represented as |v,(¢)|. Consequently, the damage
caused by the friction between the water surface and the WEC
is expressed as fotf,u‘N [vp(DIdf, For systematic fatigue
damage caused by material loading, its coefficient is initially
set as Cr = 0.003 N/m?, and it is related to the rate of change
of position over time dxb(t)/zdt. Thus, this type of damage is
expressed as o' Cr- (%) dr. Let C4 = 0.005 N/m* be the
original dynamic damage coefficient. The acceleration of the
WEC is denoted as d’x,(f)/d>. The dynamic equipment
damage élue t(2> acceleration changes is expressed as
fotf Cq- (d ;;(t)) df. The damage caused by the ebb and flow
energy response is considered in this term. Since ocean waves
are highly volatile, damage caused by environmental elements
is inevitable. With Cy, representing the coefficient of damage
caused by waves and Ah(f) representing wave heights, the
damage caused by wave environments is defined as
fotf Ch - h(t)*dt, where the initial value of Cj, is 0.002 N/m?.
Similarly, the influence of wave shocks is accounted by the
term Jy Cj-Ivo(t)Pdr, where Cj is the damage coefficient
related to shock effects, with an initial value of 0.04 N/m?.
Thermodynamic damage due to comprehensive effects, such
as friction and material deformation, is considered in the term
Otf Ci-T(t)*dt, where the thermodynamic damage coefficient
is initially set as C;=0.001 N/m?, and T(f) represents the
absolute temperature of the floating buoy. As long as friction
and resistance exist, thermodynamic damage may occur.
Finally, damage because of a combination of other
environmental factors, such as salinity, wind speed, and
similar influences, is defined as [y Ce* E()dt, where E(r)
represents the wave band energy density associated with
environmental factors, and the corresponding coefficient is
given as Co = 0.01 N/m?.

Overall, the systematic damage of the WEC is denoted as D
and is expressed as

dxo() )2+ c ‘(dsza)

I
D= (u~N'|vb<r>|+cf~( -

)2
(47)
Ch-h(t)* + Cj - (O + C- T(1)* + Ce - E(t))dt

By establishing a model describing the damage of the WEC
in power generation, nonlinear and unpredictable factors in
complex systems concerning the WEC and the working
conditions that impact systematic damage are considered. This



LIU AND CHEN: MULTI-OBJECTIVE OPTIMIZATION FOR WAVE ENERGY CONVERTER BASED ON ROBUST-STOCHASTIC CONTROL ... 131

proposed multi-dimensional model provides a comprehensive
framework for damage analysis and evaluation.

B. Cost Function

Our aim is the simultaneous maximization of the output
energy and minimization of accumulated damage caused by
the work of WEC and the unforeseeable incidents in the
environment. In the establishment of model, the formulations
of output power and systematic damage are constructed.
Because of to the requirements of dual-objective optimization,
the transformation from the systematic physical performance
to the mathematical problem is crucial to realize our
optimization objectives [36].

Let J; be the cost function concerning the maximum of the
output energy P,. Define Cy as the damage coefficient related
to the velocity of the buoy, and Cs as that of the vibrator.
These two coefficients quantify the damage caused to both the
buoy and the vibrator. Cq and Cs correspond to the damage
weights of the buoy and vibrator’s velocity squared terms,
respectively, and are equivalent to the viscous damping
coefficients (N-s/m). To account for extra energy loss that
captures mechanical damage and fatigue, this study introduces
C, as the damage coefficient caused by input power.
Moreover, the output power is represented as — J Po(f)dt.
Where taking a negative value is convenient for maximizing
the output energy. Define u(f) as an adjustable variable
representing the controllable energy applied from external
sources, with # denoting the end time of the WEC operation.
These parameters change dynamically in real-time. Herein, C,
measures the additional mechanical wear caused by external
control input. Since the u(f) is measured in N, the unit of Cy, is
I/N2.

The device reacts differently to the external environment at
different times. Damage to equipment is superimposed over
time, and its marginal rate of damage continues to change
over time of use. Therefore, when analyzing the relationship
between WEC damage and its operational time, a time decay
factor e~ is introduced in J;. Here, A is the velocity rate
constant of e~ with the unit of s~!, primarily representing
the incremental rate of equipment damage over time.
Consequently, the term considering damage due to kinetic
factors in J; with the time decay factor is expressed as

fff Cge-e[ 420t 2+c or[ W 2+C e~ Vu(r)? |
o\ ¢ dr s dr ue i '

Furthermore, a feedback term for systematic states is
incorporated to provide a comprehensive assessment of
operational states and working conditions. Define a state

dxy, dx
h(xb(t),xv(t),u(t), ot ’) which

variable function

dr ° dr
captures the intricate correlation of matching status changing
over time, including xu(¢), xy(¢), and u(f). To quantify
variations, we define h; and h;. Wherein, h; expresses the
squared velocity difference (e.g., velocity mismatch) and Ay
represents the loss induced by input power.

Thus, Eq. (48) describes more complex relationships in the
system, incorporating multicollinearity effects among
variables.

bz dxvt) h (dxb,t dxv,t

(Xb(t) Xy(8),u(?), T dr T dr )+h2(u(t))

(48)

Finally, the gap between the velocity of the buoy vy, and the
vibrator v, is measured using two weight coefficients @ and
B. Here, a serves as an operational variable to control the
impact caused by different changes in state variables and
input, while B regulates the influence on overall damage
caused by input energy, expressed as

dxb,,

( dr
weight given to the thermal-mechanical coupling damage
because of the mechanism’s kinematic mismatch, and S
balances the relative contributions of the velocity difference
and control force components of the mismatch term, which are
controllable variables.

Hence, J; can be formulated as Eq. (49), integrating the
three aforementioned terms.

dx\,, 2 A
TG +B(u(?))*dt. In specific, « controls the

max P,
s.t., min Jy(x(?),u(?),t) = —

dxp s
f [((fcos(wt) (Cg+Ac(t))) Dl) !y

dt
d.Xb’t )) d.xv t

dr dt dr+ (49)

j’f Cge dxi, )’ et I 2+c e~y
0| d dr s dr u

I dxy, 0 dxy
R

Generally speaking, J; encapsulates both the description of
power output and systematic state feedback. This paper
integrates output power and seeks to maximize energy output.
Additionally, a more comprehensive formulation of the cost
function accounts for discrepancies in the velocity of the buoy
and vibrator, based on the squared-root method. The influence
of input energy is also considered through this approach.

In the construction of the cost function of systematic
damage J», two terms L and 8 Jyf max{Cyu(t)? + Cnh(1)?,0}dt
are considered as the dynamic damage and the quadratic form
of extra systematic damage, respectively. The term of damage
L is caused by motion. In these two formulations, @ and
serve as normalizing factors for making the corresponding
terms dimensionless.

For the damage because of the wvelocity x,, the

dxb,, 2
dr ) ’

| -
ks(xy,s = Xp,1) = (v + Ac(D))

dr+

) +B(u(t))?dt

corresponding term in the cost function is Cf'(

2
Similarly, the damage caused by x, is Cd'(dg’t) . For a
coefficient of input u(#), which causes damage C,, a term
Cu(u(?))? is introduced to quantify this item of damage. The
coefficient of systematic damage related to the velocity
difference in the relative displacement of the buoy and
vibrator is defined as C;. This type of damage is given as
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dxv’l d.bet 2 . .
r ——| . C; is used to penalize the structural shear

dr dr
stresses generated by the relative velocity of the float-vibrator
(v —vp)? in the same units as Cyq.

Then, integrating the term accounting for damage because
of wave height and the acceleration of the buoy into dynamic
damage, the term L is finally obtained. Considering the
nonlinear relationships between the damage and input, the
damage is proportional to the square of the input. The
expression Cuu(f)> + Cph(r)*> represents the damage cost
function concerning the association between input u(f) and
wave height Ah(¢). Thus, the cost function of systematic
damage J; is defined as

If
Jo(x(0), u(t), tr) =L+ﬁj0 max{Cyu(r)* + Cph(r)>,0}dr  (50)

with
_ 3 d)Cb’t 2 dxv’t 2 2
L=a] [Cf(?) +Cd( - ) + Cuu())*+ o
dxy, dxp, 2+C iR+, d?xp, ? dr
\dr dr " M de2
Consequently, the cost function J, serves as a

comprehensive evaluation metric for predicting the systematic
damage of the proposed WEC, considering multiple
influencing factors under diverse scenarios.

IV. METHODOLOGY

A. Runge-Kutta Method

Because of the numerous parameters required for solving
the WEC model under volatile working conditions, a simple
direct solution is not feasible. Therefore, the RK-4 method is
chosen for its simplified solution approach. The RK method,
which can be implemented through software simulations,
avoids the complexity of manual solving. This method is an
iterative technique for solving nonlinear ordinary differential
equations, offering high accuracy by using the Taylor’s
formula and slope approximations instead of differentiation.
Essentially, the fourth-order Runge-Kutta method enhances
accuracy by calculating multiple slopes per step. We use the
dynamic damper coefficient as an example for demonstrating
the solution process.

We set h and 1, as the step size and time, respectively, as
well as the time value #,, as the sum of ¢, and h. Besides, y,
is the value in time ¢,, which also represents the target
function. Then the first slope k; is calculated as Eq. (52),
which expresses the change rate in point (#,,y,).

ki = hf(tn,yn) (52)
Thus, the second slope k; is the y, predicted based on k| in
the place of ¢, + h/2, as shown in Eq. (53).

ka =hf(tn+ﬁ,yn+lﬂ) (53)

2 2
Therefore, the third slope k3 is calculated based on Eq. (54).

h
k3 =hf(tn+_7yn+]2) (54

2 2

Finally, the slope calculation is completed based on the
fourth slope k4, as defined in Eq. (55).

ky =hf(ty+h,y,+k3) (55)

Derived from the calculation of slope, y, is updated to

calculate y,.;. This process is described in Eq. (56). It is

obvious that values after the updated step, according to

weights, reflect more accurate dynamic changes. Repeating

the above process, iterating until the end time is reached, the
result is obtained.

1
Ynel =Ynt ¢ (k1 +2ko +2k3 + ka) (56)

The dynamical equations about the floating buoy and the
vibrator have already been established in the problem
formulation to form the coupled second-order differential
equations, which take into account the motion of the floating
buoy under the action of waves, including the hydrostatic
restoring force, additional inertia force, the hinged-wave
damping force, etc. Moreover, uncertainty terms are
simultaneously included. Based on the above model, the
solutions of the motion models of the floating buoy and
oscillator are obtained according to the RK-4 method.
Specifically, the method is utilized to transform the second-
order differential equations into the first-order differential
equations for solution, and iterative solving is carried out to
compute the complete data of the displacement and velocity of
the floating buoy and vibrator under the influence of waves
with respect to time.

Because of the classic RK method normally being applied to
solve the first-order differential equations, we convert the
second-order differential equations to first-order by
introducing new variables for obtaining a solution. Let new
variables be defined as uy, uz, wi, w2, p1, p2, q1, and qa,
thus the definition in Eq. (57) is set. The u; = x1, in the first
term is the motion of the buoy, and the up=dx;,/dt
represents the velocity. The second term concerning w; and
wy corresponds to the motion and velocity of the vibrator,
respectively. The third and fourth terms denote the angular
displacement and velocity, corresponding to the buoy and
vibrator.

_ _ d.XIJ.
ul_-xl,ta Uz = dt ’
d.x2’t
W1 =X, W2 = >
—p _ d&l.
p1=01, p2= ar°
dé,
= 9 . = —
q1 2, 42 ar

Thus, a system of differential equations with reduced order
is obtained to facilitate subsequent calculations.

In our study, traditional Runge-Kutta methods are limited in
accuracy and adaptability in numerical solving due to the
fixed step size and order. Therefore, it is difficult for RK
method to capture the high-frequency, nonlinear fluctuations
in volatile sea states for volatile changes may be skipped.
Therefore, we propose the dynamic order adaptive Runge-
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Kutta method, which dynamically adjusts both the step size
and the integration order in response to local truncation error.
This adaptive mechanism enables finer resolution during
abrupt wave changing to preserve numerical stability, while
coarsening the step in stable conditions to improve
computational efficiency.

To be specific, let a controllable variable be defined as Az,
and denote ¢ as the corresponding allowed error threshold.
The parameter p represents the order of the numerical
method, thus the new step size Aty is defined in Eq. (58),
where the error is acquired based on the comparison between
the calculated high-order method y, and the low-order method

yi: error = [y, —yil.

¢ )’ﬁ (58)

Atpew = At x(
error

Comparing the error with £, the step size h is decreased
when error>¢, which is noted as h«pBh, pB<I1.
Conversely, to increase the value of ki, we define
h«yh, <y>1. For instance, if the step size calculated by
RK-4 results in excessively large error, a smaller step size
shall be selected. The mechanism functions similarly in the
opposite scenario. This is the core mechanism for dynamic
order selection.

For implementation, the initial conditions #y and yy, original
step size h, and error threshold ¢ are set. The calculation is
then performed using the classic RK-4 and RK-5 methods.
After obtaining error, the step size & and order p are adjusted
accordingly. Finally, the state variable (#,,y,) is calculated
after iterations until the end time # is reached.

Thus, our proposed DOARK method achieves a more robust
balance between accuracy and computational efficiency by
introducing a dual adaptation mechanism, which dynamically
adjusts both integration step size and order. Although the
adaptive Runge-Kutta methods have already been developed,
this method relies solely on local truncation error for step
control and uses a fixed order. However, our proposed
DOARK incorporates environmental volatility as an
additional feedback signal, enabling context-aware adaptation.
This is particularly advantageous in wave energy systems,
where real-time wave conditions are inherently uncertain and
highly non-stationary. Under volatile sea states, DOARK
increases resolution through reduced step sizes and higher-
order integration, thereby suppressing transient errors and
preserving numerical stability. Conversely, during stable
periods, it coarsens the integration to avoid redundant
computation, thus improving efficiency. As a result, DOARK
not only reduces global error accumulation but also better
supports the coupled control-dynamic system, making it more
suitable than classical RK methods for uncertainty-driven and
feedback-sensitive systems, such as WECs.

Unlike traditional adaptive Runge-Kutta methods that rely
solely on local truncation error and fixed integration order,
such as Runge-Kutta-Fehlberg-45 (RKF-45), which adjusts
only the step size based on local error estimations. DOARK
introduces a dual-adaptation mechanism that adjusts both step
size and integration order in real time. This enables it to better
capture fast-changing system dynamics and nonlinear

stiffness. Moreover, DOARK integrates environmental
volatility as an additional input signal for solver adjustment,
allowing the algorithm to respond contextually to transient
disturbances. This enhances its sensitivity to abrupt kinetic
transitions and significantly improves numerical robustness
and resolution accuracy in wave-dominated and uncertainty-
prone systems.

B. Adaptive Step Size Search

To calculate the maximum output power of the device, the
optimum damping coefficient must be determined. When the
damping coefficient is fixed, an adaptive step size searching
algorithm is employed to solve the single-parameter
optimization equation. This involves setting the damping
coefficient range and initial step size, then iterating over the
range and calculating the average output power for each
damping coefficient. The step size is adjusted based on the
solved interval, with larger step sizes for wider intervals and
smaller ones as the interval narrows. For dynamic coefficients,
the damping is proportional to the exponentiation of the
relative velocities between the floating body and the vibrator,
with a range for both proportionality and exponentiation. In
this case, a dual parameter optimization is required for both
damping and scaling coefficients. A double loop is used to
explore all possible combinations, and for each, the average
output power is calculated using the Runge-Kutta method
along with the adaptive step size strategy. The combination
yielding the highest output power is selected. The
proportionality is ranged from 0 to 100,000 while the range of
exponentiation is (0,1). For finer optimization, the optimal
damping coefficients for both linear and rotary dampers are
considered. We observe that when the damping coefficient is
between 95,000 and 10,000, and the power index is between
0.4 and 0.5, the optimal power change rate is minimal,
suggesting that the adaptive step size algorithm may not
provide the desired accuracy. Thus, the simulated annealing
algorithm is a more suitable method for this case.

C. Multi-Objective Optimization

As the WEC model is enhanced and a more accurate output
energy is calculated with DOARK, multi-objective
optimization for energy generation and equipment damage
shall be conducted. Multi-objective optimization refers to
mathematical optimization problems that involve the
optimization of multiple objective functions simultaneously.
In this work, the maximum output power P, and the
minimum systematic damage D are considered synchronously
as two objective functions. In multi-objective optimization, a
dynamic balance between objectives with diverse
characteristics must be achieved [37]. Commonly, multiple
objectives may even conflict with each other.

Hence, the multi-objective constraint method, which
converts multi-objective problems into single-objective
optimization problems, is a reasonable approach. Specifically,
we select one objective as the primary objective function,
while the other is used as a constraint condition. Herein, the
primary objective is to maximize P,, while minimizing D is
designed as a constraint.
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For systematic damage D, it must be constrained within the
tolerance range Dp,x to ensure the long-term stability and
reliability of the WEC system. Based on the selection of the
primary objective and constraints, we establish the following
optimization problem.

min P,,

59
S.t., D < Dpax (59)

Thus, output power is enhanced as much as possible while
ensuring that systematic damage remains within the tolerance
range to balance the trade-off between power output and
damage.

Since the physical characteristics of P, and D are difficult
to optimize on the same scale because of computational
challenges, a transformation 1is required. Therefore,
mathematical analysis and strategic support are taken into
account, leading to the conversion of P, and D into cost
functions J; and J,, respectively. The objective is to
minimize both J; and J, under the given constraints, i.e.,
min(Jy, /).

However, multi-objective optimization problems generally
do not have a unique solution, as multiple Pareto-optimal
solutions exist. To resolve conflicts between objectives and
determine Pareto-optimal solutions, the general form of a
multi-objective problem is given in Formula (60).

min {J1,J2, ...,Jk},

60
s.t., xeZ (60)

where {J1,/>,...,Jx} are the objective functions, x represents
the set of decision variables, and Z denotes a set of constraints
[34].

We utilize the e-constraint method to solve the multi-
objective problem. Its principal idea is to select one objective
function as the primary optimization target, while treating the
other objective functions as constraints [38, 39]. This
reformulates the multi-objective optimization problem as
Formula (61).

min Jj,
s.t., Jo = e,
J3 > &3,
(61)
Ji 2 &k,
xXeZ

Based on the application of the &-constraint method, one of
the objectives is treated as the main parameter, while the
remaining k—1 objectives are considered constraints. We
select the maximum power output P, as the primary
objective, while the minimum systematic damage D is
constrained. Hence, the Pareto set is obtained for the multi-
objective problem by finding a suitable parameter €. For this
reason, we adopt a fuzzy-based decision-making approach to
identify the leading solution from the Pareto set. The set in
(0,1) represents alternative solutions [39]. The fuzzy
membership function for objective J; is defined as Eq. (62).

1 Je < I

jlrcnax_"k U
L p.
Ji= 3 G g I SIS (62)
k k
0, J > 7"

where J; denotes the normalized objective function, with its
minimum and maximum limits given by J;"" and S,
respectively.

To determine the optimal solution, the mix-min technique is
applied to select the best solution from the Pareto set, as
described in Eq. (63).

J
5

Solution = max ¢ min (63)

Ji

We conduct dual-objective optimization by simulation in
three different scenarios. The uncertainty of unstable water
region has been considered in the multi-objective problem. To
do so, Monte-Carlo simulation is used to generate 1000
scenarios. We select the three representative scenarios that are
corresponding to stable sea condition, normal sea condition,
and volatile sea condition, respectively. The wave data are
constructed based on a database collected by US Water Power
Technologies Office integrated with Ref. [40]. Meanwhile,
wave conditions collected in our laboratories are also included
in this database. Thus, a custom database is constructed for
simulation. Our data contain wave conditions of more than
40,000 time points. We perform the filtration for the database
to select data to construct the three different scenarios in the
process of simulation. Most of the characteristics are based on
the west coast of America. Our analysis is based on a wide
range of sea state scenarios including stable, normal, and
volatile conditions of the classic study case. Combined with
Monte-Carlo simulations, the generalization is proven rather
than improvements in specific or idealized conditions.

We rank the original observation by the composite intensity
S = I[h(1), Py(1), Vg(Olll2, corresponding to instantaneous
wave height, theoretical wave power density, and gust speed,
respectively. Wherein, 3 percentiles are defined as scenarios
I-1II, corresponding to stable, normal, and volatile marine
conditions. More than 200 consecutive 100 s clips are
extracted from each segment, and the first four peaks are
extracted by fast Fourier transform (FFT) for each of them.
Then, the first peak amplitude A; and frequency w; are
injected into the model external excitation fcoswt, the
remaining three peaks are assigned to the perturbation term
D1—Dy, and the standard deviation of the residuals o is given
as Gaussian noise D, . Then, we schedule the adaptive damper
via c(t) = co+kPyw(f) with k tuned under the damage cap.
Each scenario undergoes 1000 Monte-Carlo runs in the
DOARK solver to quantify power yield and safety margin.

After then, the multi-objective problem is solved by e-
constraint as the best comprise acquired by this method. To
find the optimal Pareto compromise, we utilize the fuzzy
membership function, as our early research [39].
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V. EXPERIMENT

A. Comparison Analysis of the Optimized Model

To prove the utilization of our proposed model with
uncertainty, we compare the performance of original model
with the model with uncertainty. As the accuracy of the model
with uncertainty verified, the traditional RK-4 and the
DOARK are applied respectively, whose performances are
then compared. We compare the simulated results with the
ground truth collected in real experimental field for proving
the performance.

The numerical implementations are performed with Python
and the PyDSTool package is utilized for simulation and
calculation. PyDSTool is an efficient tool based on the Python
to obtain the solution for dynamic system, which is significant
in solving differential equations in particular [41]. Besides, the
scipy.signal is utilized for frequency domain analysis.
Additionally, PyFOAM, which is a Python tool based on
OpenFOAM, is also involved in sea conditions. After
determining the input parameters and data, the Monte-Carlo
simulation is used to generate abundant scenario about the
work condition of WEC for obtaining the optimal value of
physical coefficient. The marine conditions manufactured in
our grounded platform are also referred by the simulation
system in computer. Moreover, the CPU utilized for
experiment is the 13th Gen Intel(R) Core(TM) i7-13650HX
2.60 GHz and the RAM of our experimental platform is 16.0
GB. The simulated annealing algorithm is a stochastic
optimization search algorithm based on an iterative solution
strategy.

Some critical parameters not explicitly mentioned but
essential for the simulation setup are listed in Table 1.

Key parameters such as buoy mass, bottom radius,
cylindrical, conical part heights, etc., serve as fundamental
inputs. Additionally, derived quantities, including the volume
of the buoy’s cylindrical and conical sections, as well as the
draft and initial equilibrium position of the vibrating
component, are determined based on the classical physical
principles. To investigate different dynamic scenarios, two
cases are considered in the simulation. In case 1, the damping
coefficient remains fixed, whereas in case 2, it is dynamically
adjusted. Furthermore, the optimal initial values of critical
physical coefficients, such as Cr and Cy, are obtained through
the simulation process.

The comparison between the errors of calculated kinetic
characteristics under the wave conditions given in our ground
experimental platform of the original model and the model
with uncertainty is depicted in Fig. 3. The errors are measured
by the mean square error (MSE) between the calculated values
and the ground truth. It is obvious that our proposed model
with uncertainty has overwhelming advantages in calculating
the kinetic characteristics of the WEC. For instance, in the
case of the pendulum velocity of the vibrator, the introduction
of uncertainty makes the error decrease from 246.50 to
216.35, achieving a reduction magnitude of 30. The results
suggest that the model is optimized in terms of the accuracy of
kinetic characteristic calculations for our proposed system.
Particularly, for parameters related to velocity, the

Table 1 Setting parameter for testing.

Specification Parameter
Buoy mass 4866 kg
Buoy bottom radius Im
Buoy cylindrical part height 3m
Buoy conical part height 0.8 m
Volume of buoy cylindrical part 9.42 m3
Volume of buoy conical part height 0.83 m3
Draft of buoy conical part height 2m
Vibrating mass 2433 kg
Vibrating radius 0.5m
Vibrating height 0.5m
Seawater density 1025 kg/m?3
Gravitational acceleration 9.3 m/s?
Spring stiffness 80,000 N/m
Spring length 0.5m
Initial spring compression 0.298 m
Rotational spring stiffness 250,000 N'm
Static hydrostatic recovery stiffness coefficient 8890.8 N'-m
Initial linear damping coefficient 10,000
Range of damping coefficient [0, 100,000]

improvements are significantly more pronounced. In
summary, the consideration of uncertainty makes the model
more accurate when describing the system’s Kkinetic
characteristics, as more interference from unpredictable
factors in the ground experiment is quantified by the
aforementioned established index.

Both of the two models are solved with the conventional
forth-order RK method and the output power within 100 s is
calculated. The comparison analysis of the proposed
optimization model obtained is depicted in Fig. 4. Comparing
the performance of the original model with that of the model
with uncertainty under case 1 and case 2, the model with
uncertainty shows significant advantages in fitting accuracy,
error distribution, and stability. Specifically, the model with
uncertainty’s calculated power output matches the ground
truth significantly, especially in the peak power stage e.g.,
0-20 s, where the numeric results of peak, amplitude, and
distribution trend accurately reflect the power -change
characteristics of the actual wave energy device whereas the
original model shows obvious deviations in this stage, which
are manifested in the peak prediction of the peaks with more
unacceptable miscalculations. In the perspective of error
distribution, the model with uncertainty prevails with a
smaller error amplitude and a more uniform distribution
comparing with original model, especially in the peak stage of
drastic power changes. Meanwhile, the prediction results of
model with uncertainty are superior in robustness. In contrast,
the original model has significant error fluctuations in the
peak stage while the unstable prediction results indicate its
lack of stability and accuracy. In addition, the model with
uncertainty is more prominent in the physical meaning, which
can more accurately capture the dynamic power output
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Figure 4 Comparison of two proposed models solved with the conventional
fourth-order Runge-Kutta method.

characteristics of wave energy devices and not solely can its
prediction results describe the physical characteristic of peak

distribution and trend changes, but also provide more
scientific data support for the optimal design and performance
evaluation of the devices. Generally speaking, it can be
referred from Fig. 4 that the proposed model with uncertainty
is superior to the original model with a higher accuracy,
robustness, and applicability, which provides a more scientific
and efficient tool for the modeling of wave energy devices and
is an ideal choice for further research simultaneously.

The comparison of error variations between the two models
under wave conditions in our ground experimental platform is
illustrated in Fig. 5. As shown in Fig. 5(a), regardless of case
1 or case 2, the errors of the original model exhibit larger
initial deviations compared with the model with uncertainty.
Additionally, the error increases progressively over time, with
pronounced oscillations throughout the time series. This
suggests that the original model struggles to capture the
fluctuation patterns smoothly.

In contrast, as depicted in Fig. 5(b), the introduction of
uncertainty significantly reduces the errors within a shorter
time span. Specifically, in both case 1 and case 2, the peak
errors are mitigated to approximately 50 W, indicating that the
model with uncertainty captures the dynamic behavior of the
WEC at high power outputs with superior accuracy. As the
time series progress, the error magnitude of the uncertainty-
integrated model continues to decline, demonstrating a more
uniform distribution and eventual convergence toward zero.
Compared with the original model, the uncertainty-integrated
model exhibits a reduced fluctuation amplitude, particularly in
case 2, underscoring its enhanced accuracy and stability under
complex fluctuating conditions.

Table 2 presents the total mean squared error of the output
power for both models in case 1 and case 2. In case 1, the
prediction capabilities of the two models are quantified as
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Figure 5 Error changes of the two models within 100 s.



LIU AND CHEN: MULTI-OBJECTIVE OPTIMIZATION FOR WAVE ENERGY CONVERTER BASED ON ROBUST-STOCHASTIC CONTROL ... 137

2110.0118 and 2014.1258, respectively. The discrepancy
between the two models is minimal, and the optimized model
achieving a reduction of 4.54% in MSE. This suggests that
under simple conditions, the performance difference between
the two models is relatively insignificant. However, under the
more complex conditions of case 2, the deviation between the
two models becomes significantly larger, with the optimized
model achieving a remarkable 74.98% reduction in MSE. The
MSE of the uncertainty-integrated model is more than four
times lower than that of the original model, demonstrating a
substantial improvement in its ability to capture the dynamics
of the power output under fluctuating conditions as the
dynamic damper coefficient is a common situation.

Table 2 MSE of output power in case 1 and case 2 of original model
and model with uncertainty.

Model MSE in case 1 MSE in case 2
Original model 2110.0118 7038.0788
Model with uncertainty 2014.1258 1761.0898

Generally speaking, in the traditional WEC modeling,
system motions are often assumed to be subjected to ideal
influence, and  high-frequency  disturbances, wave
superposition effects, and sudden external perturbations
prevalent in the marine environment are neglected. In our
study, the ability of the model to fit the nonlinear response
behavior under real sea states is enhanced by constructing
multiple perturbation terms and introducing nondeterministic
disturbance factors into the system dynamics equations. These
perturbation terms, formed by time-varying sinusoidal
components and Gaussian noise, allow the model to reflect
non-stationary dynamic characteristics more accurately. This
uncertainty-integrated structure not only improves the realism
of input excitation but also enhances the model’s sensitivity to
transient kinetic changes. As a result, the numerical solver can
better track local gradient variations and dynamic transitions,
especially in high-energy intervals such as 0-20 s. The
dynamic coupling introduced by stochastic terms improves the
phase alignment, amplitude fidelity, and stability of output
power predictions. Therefore, the model with uncertainty
achieves stronger consistency with ground truth data in both
steady and volatile sea conditions, providing a more robust
foundation for performance evaluation and control
optimization.

B. Performance Analysis of DOARK

To illustrate the system’s behavior, we present the motion
responses of the buoy and vibrator. For the initial analysis, we
consider the case, in which the WEC undergoes only pendular
motion. The displacement and velocity of the buoy and
vibrator in the pendular mode are computed, and the
corresponding results are depicted in Fig. 6.

When incorporating oscillatory motion, a more realistic
scenario, the displacement and velocity of the buoy and
vibrator are further computed, building upon the previously
obtained pendular motion results. The discrepancies between
the computed values and the ground truth are illustrated in

Figs. 7 and 8. Specifically, Fig. 7 presents the simulation
results obtained using the RK-4 method, whereas Fig. 8
depicts the corresponding results using DOARK. A
comparative analysis reveals that the RK-4 algorithm exhibits
a larger error margin and higher oscillation amplitude,
particularly evident in the fluctuations of displacement and
velocity curves. In contrast, DOARK demonstrates a smoother
error profile and is more effective in maintaining a lower
cumulative error over extended time steps. This outcome
highlights the adaptive step-size adjustment feature of
DOARK, which enables it to dynamically fine-tune internal
parameters for improved accuracy in complex dynamic
systems.

The superiority of DOARK is further substantiated by the
error metrics presented in Table 3. When modeling the
physical motion of the WEC, DOARK achieves a lower MSE
of 61.65, which is approximately 8% lower than that of the
RK-4 method. Although both algorithms exhibit higher MSE
values when solving oscillatory angular motion compared
with pure pendular motion, DOARK consistently outperforms
RK-4 across all scenarios. This indicates that while the
performance difference between the two algorithms is
marginal in single-dimensional simple motions, DOARK
demonstrates significant advantages in handling multi-
dimensional dynamic interactions. Consequently, the
proposed DOARK algorithm is more effective than traditional
methods in capturing the complex physical characteristics of
WECs, making it a robust tool for accurate motion simulation
in marine energy applications.

Based on the computed pendulum displacement, velocity,
oscillatory angular displacement, and velocity of the buoy and
vibrator, the corresponding output energy is obtained. The
DOARK algorithm is applied to solve the model incorporating
uncertainty in output energy, with results presented in Figs. 9
and 10.

As shown in Fig. 9, the predicted output progressively
converges to the ground truth across the entire 100 s time
series. The accuracy of the computed output in case 1 and case
2 demonstrates a notable improvement compared with the
results in Fig. 4, indicating that DOARK enhances overall
accuracy in handling both simple fixed damping coefficient
cases and complex dynamic damping coefficient scenarios.

Furthermore, the MSE of the output energy, computed using
DOARK, is approximately 1761.0996 for case 1 and
1596.8001 for case 2, as summarized in Table 4. Compared
with the fourth-order Runge-Kutta method, DOARK achieves
12.56% and 9.36% reductions in MSE for case 1 and case 2,
respectively. The simulation results exhibit strong agreement
with the ground truth, further validating the robustness of the
proposed approach.

As illustrated in Fig. 10, the error associated with DOARK
exhibits a decreasing trend and stabilizes around 50 s, whereas
in Fig. 9, this stabilization occurs at approximately 60 s. This
observation suggests that DOARK outperforms the
conventional fourth-order Runge-Kutta method in terms of
convergence speed, reinforcing its effectiveness in solving
complex dynamical systems.

These errors primarily result from the inability of the
classical RK method to track sudden dynamic shifts, as it
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Figure 6 Pendular velocity and displacement of the buoy and vibrator under
the case that only pendular motion is considered.

lacks order adaptation and relies solely on error-based step
control. Classical adaptive RK methods often exhibit
integration lag and underpredict nonlinear oscillations in such
conditions.
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Figure 7 Error between calculated by RK-4 and ground truth concerning
pendulum displacement, velocity, oscillatory angular displacement, and
velocity of the buyo and vibrator.

The amount of time taken and the capabilities of the
machine occupied to run an algorithm are critical indicators to
analyze the convergence performance. We record the time
consumed to run the two algorithms aforementioned. We
conduct the two algorithms for 100 times and record the
average time used for running this algorithm for solving the
model with uncertainty in the perspective of kinetic
characteristic and energy output. Meanwhile, we also
demonstrate the RAM utilized for the computation. The
proposed DOARK used 2.01 s to run while the time consumed
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Figure 8 Error between calculated by DOARK and ground truth concerning
pendulum displacement, velocity, oscillatory angular displacement, and
velocity of the buyo and vibrator.

for running the conventional RK-4 method is 2.28 s. The
RAM occupied for conducting the DOARK and RK-4 method
are 17541 and 178.02 MB, respectively. The DOARK
realizes the significant enhancement of its accuracy with
1.47% less resources. To sum up, even though taking the
complexity into consideration, our proposed DOARK is still
ideal in solving the WEC model with fabulous efficiency.

The proposed DOARK algorithm demonstrates significant
advantages over the traditional RK method. DOARK
dynamically adjusts both the integration step size and the

Table 3 Comparison of MSE between RK-4 method and DOARK.

Item RK'& DOAR_IS(
(1x1079) (1x107%)
Pendulum displacement of buoy 60.73 55.80
Pendulum displacement of vibrator 71.66 64.97
Pendulum velocity of buoy 177.82 164.71
Pendulum velocity of vibrator 216.35 197.48
Oscillatory angt;lar displacement of 1.32 1.21
uoy
Oscillatory angular displacement of 1.62 1.49
vibrator
Oscillatory angular velocity of buoy 3.65 3.35
Oscillatory angular velocity of vibrator 4.60 4.21
Average 67.22 61.65
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Figure 9 Result of output energy of the optimized WEC model solved with
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Figure 10 Error changes of the two models within 100 s of DOARK.

Table 4 MSE of output power in case 1 and case 2 calculated by RK-

4 and DOARK.
Method MSE in case 1 MSE in case 2
RK-4 2014.1258 1761.0898
DOARK 1761.0996 1596.8001

order based on local truncation errors and environmental
volatility instead of RK, which is based on a fixed step size
and order. Specifically, DOARK employs an embedded pair
of RK formulas of different orders to estimate the local error
at each step and modifies the step size accordingly to keep the
error within a predefined threshold. Moreover, in highly
dynamic regimes, the algorithm increases the integration order
to better resolve stiff or rapidly changing dynamics. While in
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smoother regions, it lowers the order to reduce computational
cost. This two-level adaptation mechanism allows DOARK to
efficiently capture high-frequency and nonlinear system
behaviors, while redundant computations during stable
conditions are also reduced. Additionally, environmental
volatility metrics are used as an auxiliary signal to guide the
adjustment process, ensuring context-aware solver behavior.
As a result, DOARK achieves an optimal balance between
numerical precision and computational efficiency, making it
particularly ~ well-suited for simulating complex and
uncertainty-driven ocean environments.

To further validate the error control capability of the
DOARK method under complex disturbance conditions, we
randomly selected 100 time points and added disturbances at
five time points to simulate sudden changes in the
environment. We selected RKF-45, a typical traditional
adaptive RK method, as the comparison object. As shown in
Fig. 11, although the errors of both methods remain low in the
non-disturbance phase, the DOARK method significantly
suppresses the error peaks in each disturbance interval. The
maximum error of the RKF-45 method is 194.7 W, while that
of the DOARK method is only 119.5 W, which is a reduction
of error by 38.6%. The results show that the DOARK method
has better adaptive ability and robustness in dealing with non-
smooth inputs and fast perturbation responses, and effectively
makes up for the shortcoming of the traditional method in
adjusting the step-size lag under transient perturbations.

We assume that damping and restoring forces in the system
vary nonlinearly with state changes, which imposes strict
requirements on integration accuracy. In particular, sharp and
transient dynamics are often missed by traditional Runge-
Kutta methods because of their fixed integration structure. To
evaluate this, we introduced synthetic high-frequency
perturbations at specific time intervals to simulate abrupt
wave conditions. The results show that DOARK, with its
dynamic order and step-size adjustment mechanism,
significantly improves numerical stability and resolution in
these disturbed regions, especially near resonance or under
sudden excitations. This adaptive flexibility is the key reason
for its superior performance in solving the highly nonlinear
WEC systems.

In conclusion, the comparison results demonstrate that the
proposed DOARK algorithm significantly improves both
accuracy and convergence over the conventional fourth-order
Runge-Kutta method, and better captures the physical
coupling features of the WEC system. In particular, under
multiple externally imposed wave disturbances, DOARK
consistently yields lower absolute errors compared with RKF-
45, with the maximum error reduced from 194.7 to 119.5.

RKF-45 DOARK |

b
PUNIONNIO

Error (W)
ODNONONOND

0 20 40 60 80 100
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Figure 11 Error change of the RKF-45 and DOARK with disturb added.

This is attributed to its ability to dynamically adjust both step
size and integration order, enabling finer resolution near
abrupt system changes. Although DOARK incurs moderate
computational overhead, it provides greater numerical
stability, physical consistency, and robustness under
fluctuating marine conditions.

C. Result of Optimization

Figure 12 demonstrates the Pareto solution for the multi-
objective optimization in three different scenarios. It can be
observed that as the complexity of the wave conditions
increases, the systematic damage becomes more intensive,
while the output power also increases.

In scenario 1, the unit systematic damage of 64.55 is
associated with an output power of 9.54 W. For scenario 2, a
similar output power corresponds to a systematic damage
value of 128.18, and this number reaches 150.44 in scenario 3.

Moreover, it can be concluded that the upper bound range of
both output power and systematic damage expands with
increasing complexity.

Consider the two normalized objectives of each Pareto
solution acquired based on simulation, D and P €[0,1], as a
two-dimensional vector, with the ideal point at (0,0). The best
compromise solution is the point in this vector space that
minimizes the L., norm, such as the Chebyshev distance to
the ideal point. Equivalently, it minimizes the worst deviation
of both metrics and thus achieves an automatic balance
without subjective weighting. Ultimately, the scenario with
the largest combined trade-off is chosen to be the best trade-
off solution in the Pareto frontier, which is marked in Fig. 12.
Based on the optimal solution in Fig. 12, as the sea state
changes over time, the Pareto front of the optimum control
problem also evolves. The Pareto front appears steeper in
regions where the damage value is low, indicating that greater
power output can be achieved with lower damage in these
conditions.

This suggests that in rough sea conditions, the system must
tolerate greater damage to maintain an output power close to
that of a stable sea scenario. This occurs because of the higher
availability of wave energy resources, which results in larger
wave heights and more volatile wave frequencies.

To cope with increasing systematic damage, a conventional
control strategy is employed to stabilize the system. In
particular, damper coefficients are adjusted to limit the output
power, while parameters related to systematic damage, such as
Cy and u(?), are reduced to regulate the input energy.

Similarly, coefficients @ and § are also controlled. Most of
these variables are associated with lower output power,
emphasizing the trade-off between energy extraction and
structural endurance. Furthermore, excessive mechanical
system damage results in low energy generation efficiency.
Thus, in the proposed optimization method, coefficients
influencing output power and systematic damage are designed
to be adjustable.

The results in Fig. 12 support the proposed model’s
superiority in flexibility, demonstrating its effectiveness in
adapting to varying wave conditions.

Figure 13 illustrates the results of the control strategy
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Figure 13 Relationship between the damper coefficient and the output power.

applied to the damper coefficients. Both of the rotation and
linear damper obey this founded rule. It can be observed that
in volatile sea states, the peak values of output power are
achieved with lower damper coefficient values compared with
those in stable conditions. However, in scenario 3, the
attenuation trend of the output power becomes more
pronounced with increasing damper coefficients, which is
more significant compared with scenario 1 and scenario 2.
This trend exhibits similarities across both linear and rotary
dampers, suggesting a consistent relationship between damper

coefficients and output power. Based on the simulation
results, it can be inferred that higher damper coefficient values
are associated with more intensive systematic damage, and
this correlation is more pronounced under complex wave
conditions. Furthermore, higher wave volatility is linked to a
simultaneous rapid increase in both output power and
systematic damage.

Therefore, in scenario 3, which represents a highly unstable
condition, a lower damper coefficient strategy is preferred to
protect the WEC from excessive damage.

Figure 14 depicts the results of optimization. It can be
inferred that the improvement is larger in the volatile
operational conditions than that of in stable situations. The
output energy is optimized with a level of 12.34% in scenario
3 while the optimizations are 7.52% and 6.71% in scenario 2
and scenario 1, respectively. For systematic damage, the
optimization effect is more significant in scenario 3, which
possesses a harsh condition. Before the application of multi-
objective robust-stochastic strategy, the value of systematic
damage is 178.37 and it is 150.44 with strategy applied, which
is increased by 15.65%.

The enhancement is mainly attributed to the integration of
stochastic uncertainty and dynamic damping adjustments in
the model. Thus, more precise control of the wave-induced
kinetic behavior is enabled. The results demonstrate the
advantage of hybrid integration of stochastic modeling,
adaptive numerical solving, and robust control. Traditional
models often assume stationary or simplified wave dynamics,
leading to over-idealized predictions. In contrast, our method
adapts in real time to wave fluctuations, optimizing the trade-
off between power capture and structural fatigue.

In particular, the proposed multi-objective robust-stochastic
optimization strategy plays a central role in this improvement.
It formulates energy output and structural damage as
competing objectives within a unified cost function, allowing
the controller to dynamically adjust key variables, such as
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damping coefficients and control input in response to evolving
sea states. The stochastic terms embedded in the optimization
framework simulate realistic ocean disturbances, which guide
the search toward control solutions that are not only energy-
efficient but also robust against transient shocks. As a result,
the optimization systematically drives the system to operate
near the power-efficiency frontier while staying within safe
dynamic limits, leading to the observed 12.34% increase in
output and 15.65% reduction in damage. Therefore, our
proposed optimization strategy significantly enhances the
adaptability and resilience of WEC systems in volatile marine
conditions.

VI. CONCLUSION

This work improves the accuracy of the WEC model in both
the perspective of kinetic characteristic and output power.
Then, the performance of DOARK improved based on RK-4
is analyzed. Moreover, we conduct optimization for the
simultaneous minimization of accumulated damage and
maximization of output power. Compared with the previous
works, uncertainty is considered based on the introduction of
stochastic perturbation term and randomized interference
term, which represents the influence of unpredictable
conditions in the complex scenarios. It is worthwhile to
mention that there is no study to optimize the output energy
and systematic damage with multi-objective robust-stochastic
strategy. Overall, the model incorporating uncertainty exhibits
smaller deviations from the ground truth solutions compared
to the initial model. Moreover, the utilization of DOARK
decreases the errors between the calculated solution and the
ground truth, which means the improved method for solving
the differential equation is efficient with higher accuracy and
less resources required because of the strategy of adaptive step
size adjustment for the different wave conditions with diverse
complexity, which balances the accuracy and calculation
efficiency. This means the errors are controlled in detail so
that the accumulative error in classic RK method is avoided.
Furthermore, cost functions are defined for the simultaneous
optimization of the output power and systematic damage. For
solving the problem of multi-objective, multi-objective
robust-stochastic  strategy is measured to realize the
optimization. Based on the simulation results, the climb of
volatility of working conditions of WEC will make the output
energy increase but the corresponding damage is also higher
than stable scenarios. In scenarios with unstable conditions,
despite the output power is limited, a more conventional
strategy that controls the parameters to decrease the
systematic damage is a reasonable decision for the stability of
WEC.

As a direction for future research, we intend to implement
the proposed DOARK-based robust-stochastic control
framework in field experiments under real ocean conditions.
Such validation will help assess the practical applicability of
the model and identify potential improvements informed by
real-world operational data.

Moreover, the proposed method is structurally adaptable
and exhibits strong scalability across different WEC
configurations.  Specifically, the dynamic modeling

framework is built upon a modular representation of
hydromechanical interactions, which allows the integration of
additional degrees of freedom without requiring fundamental
changes to the control and numerical schemes. The hybrid
robust-stochastic control strategy and the DOARK solver are
inherently compatible with generalized motion equations, as
long as the system dynamics can be expressed in coupled
ordinary differential equation form. For example, the model
can be extended to multi-body WEC systems, point absorbers
with multi-axis PTO units, or oscillating water column
devices by updating the governing dynamics and associated
damping models. In future work, we will validate this
scalability by applying our method to systems with varying
structural topologies and PTO types, such as hydraulic or
pneumatic PTOs, and assess how control performance and
computational efficiency evolve with system complexity. This
direction ensures that our approach is not only tailored to the
current prototype but also generalizable to a broader class of
WEC architectures.
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