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   Abstract—To  optimize  the  energy  output  of  wave  energy
converters  (WECs)  in  complex  ocean  environments,  a  novel
multi-objective  robust-stochastic  strategy  that  integrates
uncertainty  modeling to  address  the  dynamics  of  ocean waves  is
presented.  We  introduce  the  dynamic  order  adaptive  Runge-
Kutta  (DOARK)  method  for  more  efficient  solution  of  kinetic
equations.  The  optimization  strategy  seeks  to  maximize  power
output  while  minimizing  systematic  damage.  First,  we  develop
kinetic  formulations  for  the  proposed  WEC  and  incorporate
stochastic  terms  for  a  more  accurate  description  in  volatile
conditions.  The  control  process  is  optimized  using  a  multi-
objective  approach  with  a  cost  function  that  balances  output
power  and  damage,  solved  via  the -constraint  method.  An
adaptive  algorithm  is  applied  to  adjust  step  size,  enhancing  the
Runge-Kutta method. In our approach, step size is iterated based
on  damping  coefficient  ranges.  Simulation  results  demonstrate
that the proposed strategy improves output power by 12.34% and
reduces systematic damage by 15.65%, compared with traditional
methods,  which  demonstrates  the  advantage  of  the  proposed
method.
    Index Terms—Wave  energy  converter, uncertainty  modeling,
dynamic  order  adaptive  Runge-Kutta, robust-stochastic  control,
multi-objective optimization
  

I.  Introduction

ENERGY  is  an  essential  demand  for  the  development
of  the  global  economy.  Meanwhile,  efficient
economic  increase  relies  on  sufficient  energy

utilization.  However,  many  countries  are  facing  challenges
including  depletion  of  fossil  fuels  and  environmental
pollutions [1].  Without  the  solution  of  these  obstacles,  the
economy will be trapped in a standstill.  Therefore, the use of
renewable  energy  evokes  keen  attention  around  the  world.
Wherein,  the  marine  renewable  energy,  wave  energy  in
particular,  is  one  of  the  most  prospective  renewable  energy
with  extensive  potentials  in  the  economic  development [2].

Based  on  surveys,  the  theoretical  usable  resource  of  wave
energy is estimated nearly 32,000 TWh/year [3]. Furthermore,
the  average  of  the  densities  of  wave  energy  is  estimated
2.00–3.00 kW/m2 while the solar energy and wind energy are
0.17 and 0.50 kW/m2, respectively [4]. Therefore, as a widely-
used  tool  in  wave  energy  collection,  the  wave  energy
converters  (WECs)  can  provide  a  significant  portion  of
converting the wave energy into power output [5]. To capture
energy  more  efficiently,  control  optimizations  are  accessible
enhancement  without  excessive  extra  cost.  Nevertheless,  the
interference of  volatile  waves  can be one of  the  most  crucial
challenges,  which  may  cause  unacceptable  systematic
damage.  Meanwhile,  volatile  waves  cause  more  kinetic
motion,  which  leads  to  more  energy  output.  Therefore,  the
comparison between the energy output and systematic damage
is a problem to overcome.

Recently, much attention has been paid to the novel physical
modifications of WECs to overcome the problems in unstable
ocean. To cope with the uncertainty, establishing models with
interference is proved as a valid method. Aderinto and Li [6]
proposed a self-adjustable wave energy converter that altered
its  inertia  by  ballasting  and  de-ballasting  with  seawater.
Clemente  et  al. [7] developed  and  assessed  a  wave  energy
conversion technology which could be integrated into seaport
breakwaters. Devin et al. [8] designed a pitch resonator power
take-off  (PTO)  system  using  a  geared  flywheel  system  for
power generation. Al Shami et al. [9] proposed a novel wave
energy  harvester  using  a  Scotch  Yoke  mechanism to  convert
the heave motion of a buoy into rotational energy for an off-
the-shelf  rotary  generator.  In  Ref. [10],  a  multi-dimensional
wave  energy  converter  that  realizes  wave-to-power  via  6
parallel  hydraulic  cylinders  is  proposed.  Zhang  et  al. [11]
constructed  a  multi-degree  of  freedom  decoupled  WEC  and
performed optimization in varying wave conditions.

Simultaneously,  the  development  of  new  optimization
strategy for WEC is crucial for a more accessible wave energy
utilization.  Owing  to  the  characteristic  of  non-linear  and
unstable  characteristic  of  waves  and  marine  environment,
wave  energy  output  is  unpredictable  for  long  time-horizons.
Avila  et  al. [12] proposed  a  mixture  density  network-based
method  for  forecasting  the  capabilities  of  WEC  at  offshore
and  nearshore  points,  which  fitted  bivariate  Weibull
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distributions  to  spectral  significant  wave  height  and  mean
peak  period  data.  Adibzade  and  Akbari [13] presented  a
transfer  function  (TF)  over  a  desired  range  of  wave
frequencies  to  assess  multi-body  floating  wave  energy
converter (MBFWEC) operating, which could be deployed in
complex  sea  states.  Fan  et  al. [14] proposed  a  model  to
simulate  the  entire  process  of  waves  to  power  grid  of  the
WEC  with  a  controllable-valve  buoy.  This  method  can
evaluate the power generation capabilities of  WEC under the
complex  sea  conditions.  In  Ref. [15],  the  wave  roller  and
oyster  WEC  are  improved  by  the  wave  tower  wave  surge
converter to reduce area of effect. Quilodrán-Casas et al. [16]
proposed  a  machine  learning  based  synthetic  data  generated
method  for  WEC  performance  evaluation.  This  method  can
have a speed up from 5 to 6 orders of magnitude for the new
samples  production.  Adibzade  and  Akbari [17] evaluated  the
energy output  of  multi-body floating wave energy converters
in  complex  sea  states  with  multi-peak  wave  spectra  with  a
two-dimensional  (2D)  transfer  function  based  innovative
method.  This  method  prevails  in  multi-directional  sea  states
and the function of  wave directionality  in  power calculations
is  highlighted  in  this  work.  To  deal  with  the  challenge  of
optimizing  the  efficiency  of  WEC  on  a  regional  scale,
Mehdipour et al. [18] developed a hill climb-explorative grey
wolf optimizer, which was a hybrid algorithm combining local
search and swarm-based global optimization strategies. Zhang
et  al. [19] proposed  a  chaos-based  differential  evolutionary
algorithm  for  evaluating  the  optimal  buoy  arrangement
effectively  and  promptly.  This  algorithm  consists  of
excavation, balancing, and recycling layers,  which is a three-
layer  information  structure.  Compared  with  four  traditional
mainstream  algorithms,  a  real-time  controller  method  is
developed by Zhang et al. [20]. The method integrated with a
long  short-term  memory  recurrent  neural  network  wave
prediction  model,  which  is  more  compatible  under  irregular
waves. Xu et al. [21] proposed a numerical model based on 6
degrees  of  freedom  for  enhancing  energy  conversion
efficiency  of  WEC  and  analyzed  the  effect  of  9  types  of
motions.

The Runge-Kutta (RK) method is highly precise, stable, and
capable of handling non-linear systems, making it suitable for
complex wave dynamics in WEC research [22]. Runge-Kutta
is highly emphasized in the research of wave energy. Liu et al.
[23] integrated  Runge-Kutta  fourth-order  (RK-4)  method  to
solve the response and capture performance of the evaluation
of mean annual capture width ratio capacity of the oscillating
wave  surge  converters  in  the  situation  that  the  wave  was
irregular.  Mirzaei  et  al. [24] discretized  the  boundary
conditions with RK-4. He et al. [25] proposed a weighted RK
discontinuous  Galerkin  method  and  extended  this  method  to
solve  the  elastic  wave  equations  in  2D transversely  isotropic
media.  Chen  et  al. [26] proposed  an  RK-4-based  solution
method to solve the motion equations of WEC.

Taking  the  irregular  ocean  environment  into  consideration,
the multi-objective optimization is required to realize a trade-
off  of  multiple  elements  for  non-linear  problems [27].
Hoffmann  et  al. [27] introduced  a  multi-objective  model
predictive  control  approach  for  WEC  based  on  dielectric

π

elastomer  generator,  whose  order  was  to  maximize  energy
harvested  from  ocean  waves  while  minimizing  the  damage
accumulated by the dielectric elastomer generator. Carapellese
et  al. [28] proposed  a  dynamic  analysis  and  performance
assessment  of  the  inertial  sea  wave  energy  converter  with
nonlinear  model  to  achieve  energy-maximizing  control  and
energy absorption improvement. Cheng et al. [29] presented a
hybrid  WEC  that  integrated  an  oscillating  water  column  and
an  oscillating  buoy,  which  was  installed  within  a -type
floating  breakwater  to  enhance  the  hydrodynamic
performance.  Shadmani  et  al. [30] utilized  two  primary
objective  functions  of  energy  production  based  on  wave
conditions  and  the  layout  of  WEC  arrays  for  reducing
interference between the devices to improve global efficiency.
Cheng  et  al. [31] explored  the  feasibility  of  integrating  very
large  floating  structures  with  multiple  WECs  combined  with
oscillating  water  columns  and  oscillating  flaps.  Additionally,
Gu  et  al. [32] concentrated  on  the  optimization  of  cost  and
emission. Rahimi et al. [33] paid attention to the two-objective
optimization  of  the  WECs’ dimensions  and  the  power  PTO
parameters.  By  adjusting  the  production  torque  within  the
PTO,  Vakili  et  al. [34] optimized  the  energy  efficiency  of
Pelamis WEC. Based on survey, multi-objective optimization
plays  a  crucial  role  in  addressing  the  complex  non-linear
optimization  problems  of  WECs  by  balancing  conflict
objectives.

The  surveyed  literature  reveals  that  while  physical
modifications  show  promise,  their  high  complexity  and  cost
hinder  practical  use.  Recent  optimization  strategies  focus  on
multi-dimensional  objectives,  but  neglect  the  impact  of
volatile  wave  conditions,  highlighting  the  need  to  consider
non-linear  and  unstable  factors.  We  address  these  issues  by
introducing  stochastic  perturbation  elements  to  improve
system  dynamics  under  uncertainty.  Hybrid  robust  control
strategy  and  frequency  domain  analysis  are  used  to  assess
uncertainty impacts.  Additionally,  the RK method’s accuracy
needs  improvement,  and  existing  models  largely  assume
predictable, periodic wave motion, overlooking the instability
of  ocean  environments,  especially  in  harsh  weather  regions.
Recent  researches  have  emphasized  the  significance  of
dynamic  optimization [35]. Therefore,  to  balance  accuracy
and  cost,  we  propose  a  dynamic  order  adaptive  Runge-Kutta
(DOARK)  approach,  which  adjusts  step  size  and  order.  A
multi-objective robust-stochastic strategy is also introduced to
mitigate  damage from environmental  complexity,  solving the
stochastic  multi-objective  problem  and  selecting  the  optimal
trade-off  via  a  fuzzy membership  function.  The highlights  of
this paper are summarized as follows:

(1)  Stochastic  perturbation  term  is  concluded  in  the  model
for  comprehensive  consideration  about  uncertainty  for
depicting  the  output  of  energy  more  accurately.  Thus,  our
proposed  model  will  be  more  suitable  for  complex  ocean
environment.

(2)  The  DOARK  is  developed  to  solve  the  model,  which
realizes  the  mechanism  for  dynamic  orders  selection.  Step
with  different  sizes  in  scenarios  with  different  volatility  is
adapted and the errors will be reduced in iteration process.

(3) A multi-objective robust-stochastic strategy is conducted
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for  the  simultaneous  optimization  of  the  maximum of  output
power  and  the  minimum  of  systematic  damage.  Meanwhile,
the proposed strategy is capable of controlling the parameters
concerning  the  systematic  damage.  This  method  minimizes
the  total  systematic  damage  and  mitigates  the  effect  of  the
uncertain parameters.

The rest of this paper is as follows. Section II describes the
mathematical  model  of  our  proposed  WEC,  including  the
description  of  kinetic  motions  and  the  energy  output.
Meanwhile,  the  model  integrated  with  uncertainty  is
constructed  in  detail.  Section  III  presents  methods  for
searching  the  numerical  solution  for  the  established  model.
The  improved  DOARK is  constructed  in  Section  IV,  as  well
as  our  multi-objective  robust-stochastic  optimization  strategy
is introduced. The results of simulation are also demonstrated
in  Section  IV  for  evaluating  the  effect  of  model  with
uncertainty  and  the  DOARK.  Finally,  Section  V  presents
some final remarks and conclusions.  

II.  Problem Formulation

c(t)

c(t)

Our  proposed  WEC  is  depicted  in Fig.  1.  The  proposed
WEC  contains  buoy,  vibrator,  central  shaft,  and  power  take-
off  system.  The  PTO  unit  is  integrated  with  a  permanent-
magnet linear generator with a rotary damper. Incident waves
excite  coupled  heave  and  small  amplitude  pitch  of  the  buoy.
These motions are transmitted along the shaft to the vibrator,
in which the relative translational and rotational displacements
drive  the  PTO  and  are  directly  converted  into  three  phases
electrical  power.  The  hydro  mechanical  dynamics  are
represented by a four-degree-of-freedom model incorporating
buoy  mass  and  added  mass,  hydrostatic  restoring  stiffness,
frequency-dependent  radiation  damping,  and  a  time-varying
PTO  damping  coefficient .  Although  energetic  sea  states
increase  instantaneous  power  extraction,  they  also  elevate
structural  loads  and  promote  cumulative  fatigue  damage.
Consequently, the control objective considered in this work is
to  schedule ,  so  that  the  mean  absorbed  power  is
maximized  while  the  damage  remains  below  its  permissible
threshold, thereby achieving an optimal compromise between
energy yield and structural integrity.  

III.  Modeling
  

A.  System Modeling

F1

When the WEC is floating on the water, it is influenced by
hydrostatic  recovery  force,  which  is  the  restoring  force  that
automatically acts  on an object  to push it  back to its  original
equilibrium  attitude  after  being  pushed  away  from  its
equilibrium draft  position by an external  force  because  of  an
imbalance in the moments generated by buoyancy and gravity.
The hydrostatic recovery of buoy  is shown in Eqs. (1) and
(2).
 

F1 = F2− (G1+G2) = V(x1,t)g (1)
 

V(x1,t) =

πRx1,t, x1,t ⩽ 2.0;

2π+0.52π(2.8− x1,t)3, 2.0 < x1,t ⩽ 2.8
(2)

F2 R G1 G2
x1,t

f
ω t

F3

where  is the buoyancy,  is the radius, and  and  are
the gravities of vibrator and buoy, respectively. The  is the
replacement of buoy. The wave exciting force is also included
in  the  motion  of  WEC.  Note  that  represents  amplification,
and  represents  the incident  wave frequency,  and  is  time.
Thus, the wave exciting force is shown in .
 

F3 = f cos(ωt) (3)

F4

The  wave-making  resistance  on  the  float  is  the  resistance
caused  by  the  ocean  wave  when  the  buoy  is  moving  in  a
pendulum motion, which is proportional to the velocity of the
floating body pendulum swing and opposite in direction. The
wave-making resistance  is given by
 

F4 = q · v2,t (4)
q v2,t

m3
F5

where  is  the  resistance  coefficient  and  is  the  move
speed. Not only will the buoy be pushed by the forces, but the
surrounding  fluids  also  need  to  be  moved.  The  force  that
drives a floating body in a rocking motion must not only drive
the  floating  body  in  motion,  but  also  the  fluid  around  the
floating body. If the floating body is to gain acceleration in the
waves,  an  additional  force  needs  to  be  applied,  i.e.,  an
additional inertial force , therefore, the force of added mass

 is given as
 

F5 = m3
d2x1,t

dt2 (5)

F6

The  oscillator  is  in  reciprocating  motion  along  the  central
axis, always with a spring attached to one end, which exerts a
force during the pendulum motion. The amount of this force is
proportional to the difference in displacement of the buoy and
the vibrator. The magnitude of the elastic force exerted on the
vibrator  is shown in Eq. (6).
 

F6 = k1(x1,t − x2,t + x0) (6)
x2,t x0

k1

F7

where  is  the  displacement  of  the  vibrator,  and 
represents  the  initial  spring  compression.  The  spring
coefficient  is  written  as .  When  the  vibrator  and  the  buoy
move  relative  to  each  other,  the  linear  damper  produces  a
damping force, which is proportional to their relative velocity.
Thus, the damping force  is expressed as
 

F7 = k2 · (v1,t − v2,t) (7)

 

Vibrator

Rotary
damper

Rotating
shaft

Pendulum

Oscillatory

Central shaft

Buoy

Linear
damper

Sprung
PTO

 
Figure 1 Overall structure of the proposed WEC model.
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k2
v1,t v2,t

where the damping coefficient of the linear damper is written
as .  The  movement  speeds  of  the  buoy  and  vibrator  are
denoted as  and , respectively.

O

H1 H2
H3

h4 O
h5

m1 m2

m4 m5

Under  the  action  of  waves,  the  buoy  not  only  undergoes
vertical  oscillations,  but also experiences longitudinal  motion
from side to side. At this moment, the central axis of the buoy
is subjected to the moment of force exerted by the waves.  In
this  more  complex  scenario,  the  determination  of  the  buoy’s
center  of  gravity  becomes necessary.  As illustrated in Fig.  2,
the center of gravity  is located on the central axis, as both
the buoy and vibrator are rotational bodies. Denote the heights
of  the  conical  and  cylindrical  sections  as  and ,
respectively,  and  the  height  of  the  vibrator  as .  We
introduce  as  the  distance  between  point  and  the  top  of
the  conical  and  cylindrical  sections,  while  represents
another relevant height parameter.  Let  and  denote the
masses  of  the  buoy  and  the  vibrator,  respectively.
Furthermore,  the  masses  of  the  conical  and  cylindrical
sections of  the buoy are given by  and .  Consequently,
the center of mass of the buoy is determined as Eq. (8).
 

h = h4 ·m4−h5 ·m5 (8)

J4

Based  on  the  equilibrium  axis  theorem,  the  moment  of
inertia  is given by
 

J4 = J1+ J2+m4 ·h2
4+m5 ·h2

5 (9)
J1 J2where  and  are the moments of inertia of the cylindrical

and conical parts, respectively.

J5

Equation  (10)  describes  the  moment  of  inertia  of  the
vibrator.  When  the  vibrator  has  a  straight-line  mass
distribution  along  its  center  of  mass  axis  of  gyration,  its
moment of inertia  is given as
 

J5 =
m2

2

(
r2+

1
6

H2
3

)
(10)

rwhere  is the radius of the vibrator.

l

The  vibrator  undergoes  longitudinal  oscillation  around  the
bottom rotating axis, which is located on the interface surface
and  is  parallel  to  the  rotating  shaft  frame.  Given  that  the
height  of  pedestals  and  rotating  shaft  can  be  neglected,  the
distance  between  the  center  of  gravity  and  the  center  of  the
circular interface, denoted as , is expressed as

 

l = x2,t − x1,t + x00+
H3

2
(11)

x00where  represents the original length of the spring.

J6

By  applying  the  parallel-axis  theorem,  a  more  precise
representation  of  the  vibrator’s  moment  of  inertia  is
obtained.
 

J6 = J5+m2l (12)
MhrFinally, the hydrostatic recovery moment of the buoy  is

given by
 

Mhr = chr · θ1 (13)

θ1 θ2

chr

where  the  angular  displacement  between  the  axis  of  the
vibrator and the buoy is denoted as , while  represents the
angular  displacement  between the plumb line and the axis  of
the  buoy.  Additionally,  the  coefficient  of  the  hydrostatic
recovery moment is denoted as .

F3
Mwe

The  oscillatory  motion  of  the  wave  energy  converter  is
driven  by  the  wave-exciting  force  and  the  wave-exciting
moment , which is expressed in Eq. (14).
 

Mwe = Lcos(ωt) (14)
Lwhere  is  defined  as  the  amplification  factor  of  the

oscillatory motion.

F4
MWMR

w1 q2
MWMR

When  considering  the  oscillatory  motion,  the  moment  of
wave-making  resistance  cannot  be  ignored  because  of  the
resistance  caused  by  waves,  which  opposes  the  oscillatory
motion  of  the  floating  buoy.  The  moment  of  wave-making
resistance is proportional to the angular velocity of the float’s
oscillation.  Synonymous  with  the  force  described  in ,  the
moment  of  wave-making  resistance,  denoted  as ,  acts
in  the  opposite  direction  to  the  angular  velocity  of  the  buoy

. This moment also has a proportional coefficient . Thus,
 is defined as

 

MWMR = q2 ·w1 (15)

MTRS

As for the oscillatory motion of the WEC, the torque of the
rotary spring  is given by
 

MTRS = k3(θ1− θ2) (16)
k3where  represents the stiffness of the rotary damper.

F7 MTRDSimilar  to ,  the  torque  of  the  rotary  damper  is
defined as
 

MTRD = k4(w1−w2) (17)
k4

w2

where  is the damping coefficient of the rotary damper, and
 is the velocity of the vibrator.

F′6

When  the  buoy  undergoes  longitudinal  oscillatory  motion,
the  spring  tilts.  Consequently,  the  pressure  exerted  by  the
object  on  the  spring  is  reduced,  effectively  creating  an
upward-tilted force pulling the spring upward. The force in the
vertical direction is analyzed by decomposing it  orthogonally
into  the  force  equation  of  the  pendulous  oscillatory  motion.
The elastic force of the spring  is defined as
 

F′6 = mg−mgcos(θ1+ θ2) (18)
When the vibrator and buoy are in longitudinal motion, the

damping force is tilted instead of acting purely in the vertical

 

y

O x
z

r

y

H2

H1

R
O

h4
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Figure 2 Schema of the structure of buoy and vibrator.
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F′7direction.  In  this  case,  the  damping  force  of  the  vibrator 
follows
 

F′7 = −F7 (19)
Based  on  the  analysis  of  mechanical  forces,  a  system  of

equations for dynamics is formulated. First, the motion of the
buoy is described by Eqs. (20) and (21), considering only the
pendulum  motion.  The  floating  buoy  is  influenced  by  wave-
exciting  force,  wave-making  resistance,  hydrostatic  recovery
force,  and  buoyancy.  The  two  equations  below  indicate  that
the  acceleration  of  the  floating  buoy  is  affected  by  the
variation of buoyancy with depth.
 

(m1+m3)
d2x1,t

dt2 = f cos(ωt)− c
dx1,t

dt
−V(x1,t)ρg (20)

V(x1,t)where the buoyancy function  is defined as
 

V(x1,t) =


2
3
π(2.8− x1,t)3, 2.0 ⩽ x1,t ⩽ 2.8;

0, otherwise
(21)

cwhere  represents the general resistance coefficient.
For  the  vibrator,  the  effects  of  gravity,  spring  force,  and

damping  force  are  considered.  The  gravity  counteracts  the
initial  spring force,  which allows the system to be simplified
by  assuming  that  the  original  length  of  the  spring  remains
unchanged  over  time,  and  gravity  does  not  contribute  to  the
vibrator’s  motion.  Thus,  Eq.  (22)  represents  the  dynamic
equation  governing  the  motion  of  the  vibrator,  emphasizing
the  interaction  between  the  floating  buoy  and  the  vibrator
through the spring coefficient  and the damping coefficient  of
the linear damper.
 

m2
d2x2,t

dt2 = −k1(x2,t − x1,t)− k2

(
dx2,t

dt
− dx1,t

dt

)
(22)

In the scenario that only pendulum motion is considered, the
buoy  and  vibrator  move  vertically,  and  their  initial  positions
are  at  the  origin.  This  study  assumes  that  both  objects  are
floating  on  the  water,  so  their  initial  velocity  is  zero.
Consequently,  the  simultaneous  equations  describing  the
initial conditions of displacement are given as
 

x1,t(0) = 0,

x2,t(0) = 0,

dx1,t(0)
dt

= 0,

dx2,t(0)
dt

= 0

(23)

These  overall  equations  are  obtained  by  applying  Newton-
Euler balances to the heave-pitch motions of the buoy and the
surge-roll  motions  of  the  internal  mass.  Their  inertial
contribution is merged the structural mass with the frequency-
dependent  added  mass.  Then,  the  harmonic  wave-excited
force  or  torque,  and  the  velocity-proportional  terms  are
superposed  to  account  for  radiation  damping  and  PTO
damping  effects.  Meanwhile,  their  displacement-proportional
term  is  used  to  represent  hydrostatic  restoring  force.  The
relative  displacement  and  velocity  terms  are  conducted  to

express the coupling spring and damper between the buoy and
the  vibrator.  These  contributions  form  a  set  of  four  coupled
second-order  differential  equations  providing  the  complete
dynamical model of the WEC system.

δx1,t δx2,t

One  of  the  primary  contributions  of  this  work  is  the
introduction of minor perturbations into the model to account
for  uncertainty.  To  analyze  the  system’s  response  to  small
perturbations,  a  linearization  process  is  applied.  The
perturbation terms are defined as  and . Accordingly,
the perturbed equations are given by
 x1,t = x1,0+δx1,t,

x2,t = x2,0+δx2,t
(24)

Substituting Eq. (24) into Eqs.  (20) and (22),  the system is
linearized, yielding Eq. (25)
 

(m1+m3)
d2x1,t

dt2 = f cos(ωt)− c
dx1,t

dt
− k1(δx2,t −δx1,t),

m2
d2(δx2,t)

dt2 = −k1(δx2,t −δx1,t)− k2

(
d(δx2,t)

dt
− d(δx1,t)

dt

)
(25)

s

c

X1,t(s) X2,t(s)

For further analysis of the robustness of the proposed WEC
system,  a  frequency  domain  analysis  is  conducted.  Based  on
the  Laplace  transform,  the  transformation  function  is
constructed,  leading  to  the  auxiliary  Eq.  (26).  Here, 
represents  the  complex  number  of  frequency  response.  The
coefficient  denotes  the  resistance  coefficient,  which
accounts  for  the  effect  of  resistance  when  the  system  moves
with  water.  The  transformed  displacements  of  the  floating
buoy and vibrator, denoted as  and , respectively,
are expressed using the Laplace transform.
 [

(m1+m3)s2+ cs+ k1 −k1
−k1 m2s2+ k2

] [
X1,t(s)
X2,t(s)

]
= 0 (26)

k1 k2

f ω

Thus,  this  modification  enables  a  more  comprehensive
consideration  of  the  equilibrium  and  stability  of  the  system,
enhancing  the  model’s  robustness  against  perturbations  and
improving its accuracy in reflecting the real physical behavior.
For  instance,  the  system  response  characteristics  can  be
optimized  by  adjusting  parameters  and  to  ensure  the
stability  of  the  proposed  system.  Furthermore,  the  dynamic
behavior  of  resonant  frequency  additions  can  be  investigated
through  parameters  and .  Additionally,  the  auxiliary
equation  formulated  for  frequency  domain  analysis  is
fundamental  for  studying  resonance  phenomena.  Therefore,
the  proposed  model,  which  incorporates  minor  perturbations
and  linearization,  provides  a  more  comprehensive
understanding of the coupling dynamics between the buoy and
the vibrator.

ci

D1 D2

Based  on  the  kinetic  models  established  above  to  describe
the  pendulum  motions  of  the  proposed  WEC,  oscillatory
motion must be considered for further analysis of factors, such
as  wave  force,  gravity,  and  buoyancy.  Herein,  is  utilized
to  represent  the  resistance  coefficient  in  corresponding
situations.  The  influence  of  waves  acting  on  the  buoy  and
vibrator  is  modeled  as  two  disturbance  terms,  and ,
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respectively.  Consequently,  the  kinetic  equations  governing
the motion of the floating buoy and vibrator are given by
 

(m1+m3)
d2x1,t

dt2 = f cos(ωt)− c1
dx1,t

dt
−V(x1,t)ρg+D1

(27)
 

m2
d2x2,t

dt2 = m2g(1− cos(θ1− θ2))−

k1(x2,t − x1,t)−

k2

(
dx2,t

dt
− dx1,t

dt

)
+D2

(28)

ϕiThe  corresponding  phase  constant  is  incorporated  into
the model. Thus, the disturbance terms are defined as
 D1 = DA1 sin(k1x1,t −ωw1t+ϕ1),

D2 = DA2 sin(k2x2,t −ωw2t+ϕ2)+DΓ1
(29)

DA1 DA2
ωwi

D1
D2

where  is  the  amplitude  of  the  buoy’s  motion,  and 
corresponds to that of the vibrator. Meanwhile,  represents
the  effect  of  the  wave  frequency  on  different  components  of
the  system.  represents  primary  harmonic  component  of
incident  wave  group  acting  on  the  buoy  and  is  the
combined  effect  of  transmitted  wave  load  plus  in-body
hydromechanical noise.

DΓ1
DΓ1 ∼ N(0,σ2)

It is important to note that the primary disturbance acting on
the floating buoy can be fully  explained by wave harmonics.
However,  the vibrator is  not only influenced by wave forces,
but also by the motion of the buoy, as it  is  placed within the
buoy’s  interior.  Therefore,  based  on  the  mechanical  force
analysis,  an  additional  noise  component  must  be
considered, where .

To  more  accurately  characterize  the  state  of  the  system  in
oscillatory  motion,  the  relative  inclination  between  the  buoy
and vibrator, caused by wave energy, is described as
 

δθ1 =
DA1

k4
sin(k4θ1−ωw1t+ϕ1),

δθ2 =
DA2

k3
sin(k3θ2−ωw2t+ϕ2)

(30)

When  the  motion  of  the  WEC  exhibits  both  pendular  and
oscillatory behavior simultaneously, incorporating uncertainty
and  dynamic  changes,  the  kinetic  equation  governing  the
oscillatory motion of the vibrator is transformed into
 

J2
d2θ2

dt2 = −m2gsin(θ2)− k3(θ2− θ1)− c3

(
dθ2
dt
− dθ1

dt

)
+D3

(31)
D3where the disturbance term  is defined as

 

D3 = DA3 sin(k3θ2−ωw3t+ϕ3)+DΓ3 (32)
DA3

DΓ3
where  represents  the  vibrator’s  amplitude  of  motion.
Similarly, we assume that the perturbation term  follows a
standard normal distribution. For the same reason, the kinetic
equation governing the floating body is given by
 

J1
d2θ1

dt2 = −m1gsin(θ1)− k4(θ1− θ2)− c4

(
dθ1
dt
− dθ2

dt

)
+D4

(33)

D4where the disturbance term  is defined as
 

D4 = DA4 sin(k4θ1−ωw4t+ϕ4)+DΓ4 (34)
DA4

D3

D4

where  represents  the  amplitude  of  motion  of  the  buoy.
Thus,  the  uncertainty  simulated  by  is  wave-induced
overturning  moment  superposed  with  internal  gearbox
torsional  jitter,  while  the  restoring-moment  fluctuation
because  of  short-crested  seas  and  slamming  is  simulated  by

.
D1 D4

D1 D2 D3
D4

In the present model, stochastic disturbance terms  to 
are  introduced  to  represent  environmental  uncertainty  in  a
physically consistent and statistically calibrated manner. Each
term  acts  on  a  specific  degree  of  freedom,  which  includes
buoy  heave ,  vibrator  heave ,  vibrator  pitch ,  and
buoy  pitch .  They  are  constructed  from  the  first  to  the
fourth  dominant  harmonics  extracted  from  the  measured
wave-elevation  spectrum.  The  harmonic  amplitudes  and
phases are treated as zero-mean Gaussian random variables of
which  standard  deviations  scale  with  the  significant  wave
height,  while  a  small  frequency  perturbation  is  added  to  the
pitch-related  terms  to  capture  short-crested  sea  effects.  This
formulation  introduces  multi-scale  stochastic  excitation
without  altering  structural  parameters,  allowing  the  model  to
reproduce  the  statistical  characteristics  of  both  moderate  and
extreme  sea  states  within  a  computationally  tractable
framework.

Du

Ds

Du

N(0,σ2
s )

On this basis, we define a randomized interference term 
to simulate the uncertainty in territorial waters under complex
conditions,  such  as  severe  weather,  unpredictable  ocean
currents, and varying wave frequencies. Herein,  represents
the  scalar  factor  used  to  control  the  intensity  of  stochastic
perturbations.  The  randomized  interference  term  is
modeled  as  a  combination  of  random  variables  obeying  a
normal distribution , as formulated in Eq. (35).
 

Du = Ds ·N(0,σ2
s ) (35)

DuOverall, we introduce the randomized interference term 
into  the  kinetic  equations  of  the  floating  body  and  vibrator.
The  simultaneous  equations  governing  both  pendular  and
oscillatory  motion in  the  proposed WEC system are  given in
Eq. (36).

Du

D1 D4

Du

In  specific,  is  an  unstructured  disturbance  term
introduced  to  capture  broadband  environmental  effects  that
are  not  represented  by  the  harmonic  terms  to .  It
aggregates  high-frequency  wavelets,  gust-induced  pressure
fluctuations,  residual  hydrodynamic  interactions,  and  sensor
noises.  Mathematically,  is  modelled  as  a  zero-mean
Gaussian process applied additively to each state equation. Its
standard deviation is obtained from the residual energy of the
measured  wave  spectrum  after  the  first  four  peaks  are
removed  and  is  further  scaled  by  the  scenario-dependent
significant  wave  height.  This  formulation  reproduces  the
stochastic  envelope  and  rare  high-intensity  transients
characteristic of severe sea states while maintaining numerical
tractability.

The  system  governing  the  motion  of  the  proposed  WEC
with the inclusion of disturbances is given by
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

(m1+m3)
d2x1,t

dt2 = f cos(ωt)− c1
dx1,t

dt
−V(x1,t)ρg+

D1+Du−u,

m2
d2x2,t

dt2 = m2gsin(θ1− θ2)− k1(x2,t − x1,t)−

k2

(
dx2,t

dt
− dx1,t

dt

)
+D2+Du+u,

J1
d2θ1

dt2 = −m1gsin(θ1)− k4(θ1− θ2)−

c4

(
dθ1
dt
− dθ2

dt

)
+D4+Du,

J2
d2θ2

dt2 = −m2gsin(θ2)− k3(θ2− θ1)−

c3

(
dθ2
dt
− dθ1

dt

)
+D3+Du

(36)

To  enhance  the  stability  of  the  model  under  complex
conditions,  a  hybrid  robust  control  strategy  is  incorporated.
We develop a hybrid strategy combining sliding mode control
(SMC)  and  robust  control  techniques  to  adapt  to  real-time
variations and improve responsiveness to disturbances.

z = x2,t − x1,t
u ka ca

kd

u

Define  the  state  variable ,  and  introduce  a
closed-loop control  system .  The  control  parameters , ,
and  are  employed  to  regulate  the  system’s  response  to
disturbances  and  dynamic  variations.  Consequently,  the
control input  is defined as
 

u = −kaz− ca
dz
dt
+ kd ·Du (37)

u

z = x2,t − x1,t z̈ = −kaz− caż+ kdDu
u

where  is  applied  to  the  relative  translational  degrees  of
freedom  between  the  buoy  and  vibrator  as  inner  force.  The
sign of the inner force appears with opposite values in the two
equations  to  ensure  consistency  with  the  conservation  of
momentum.  The  first  two  equations  in  Eq.  (36)  can  be
subtracted  to  obtain  the  relative  coordinate.  As  a  result,  the
second-order  dynamics  of  the  relative  displacement

 can  be  expressed  as ,
corresponding to Eq. (37).  is essentially a realization of the
equivalent spring-damping-disturbance compensation network
in  the  translational  subsystem,  and  its  inclusion  does  not
change the structure of the rotating subsystem.

A deeper  analysis  of  the  system’s  dynamic performance in
complex sea conditions is required to assess its robustness and
stability.  Herein,  the  system’s  homeostatic  behavior  is
evaluated  based  on  the  Lyapunov  stability  theory.  The
Lyapunov  function  is  chosen  to  establish  the  dynamic
performance index as
 

V(z) =
1
2

z2 (38)

We derive the Lyapunov function, incorporating the control
strategy  to  ensure  convergence  of  the  system  state,  yielding
Eq. (39)
 

dV
dt
= z · (ż+u) = z ·

(
−kaz− ca

dz
dt
+ kdDu

)
,

s.t.,
dV
dt
< 0

(39)

This condition guarantees the system’s stability in complex
sea  conditions  by  selecting  appropriate  control  parameters
from  Eq.  (37).  In  other  words,  the  proposed  control  strategy
ensures  the  robustness  of  the  system  against  random
disturbances. For the solution, the initial conditions are given
in Eq. (40).
 

x1,t(0) = x1,0,

x2,t(0) = x2,0,

dx1,t

dt
(0) = v1,0,

dx2,t

dt
(0) = v2,0,

θ1(0) = θ1,0,
θ2(0) = θ2,0,
dθ1
dt

(0) = ω1,0,

dθ2
dt

(0) = ω2,0

(40)

Thus,  by  introducing  a  small  perturbation  term,  the
nonlinear problems involved in this study can be transformed
into linear problems, as described in Eq. (41).
 

x1,t = x1,0+δx1,t,

x2,t = x2,0+δx2,t,

θ1 = θ1,0+δθ1,

θ2 = θ2,0+δθ2

(41)

By  applying  the  Laplace  transform,  a  frequency  domain
analysis  of  the  system  is  conducted  to  obtain  the  transfer
function, as described in Eq. (42).
 [

(m1+m3)s2+ c1s+ k1 −k1
−k1 m2s2+ c2s+ k2

]
×[

X1,t(s)
X2,t(s)

]
=

[
D1(s)
D2(s)

] (42)

In  this  way,  the  model  with  uncertainty  can  accurately
capture  the  dynamic  behavior  of  the  floating  buoy  and  the
oscillator.  By  incorporating  perturbation  terms,  the  model
clarifies  the  effects  of  waves  and  other  random  factors,
leading  to  a  more  comprehensive  synthesis  of  the  kinematic
characteristics  of  the  buoy  and  oscillator.  Consequently,  the
model is capable of reflecting the dynamic response behavior
of the floating buoy and oscillator more accurately in complex
environments.  Moreover,  a  hybrid  robust  control  strategy  is
introduced  to  enhance  the  adaptability  of  the  model  under
complex  sea  conditions,  significantly  improving  the  model
stability.

The  existence  of  optimal  damping  has  been  confirmed  by
numerous  previous  studies.  When  a  resonant  pendulum  is
subject  to  damping  effects,  its  orbit  shifts  to  a  period-1
rotation,  which  can  be  described  by  a  linear  positive
correlation between energy output and the damper coefficient.
However, excessive damping can disturb this balance, leading
to  small-amplitude  oscillations.  Therefore,  determining  the
optimal  damping  coefficient  is  crucial.  For  scenarios  with
stable natural conditions, a fixed damper coefficient is simple
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to apply. However, to accommodate more diverse scenarios, a
dynamic  damper  coefficient  strategy  is  commonly  utilized,
meaning  that  the  optimal  damper  coefficient  is  not  unique
when modeling the energy output of the WEC.

c(t)
∆c(t)

c(t)
c(t) = c0+∆c(t) c0

∆c(t) ∼ N(0,σ2
c)

Pf vb,t
vb,t = dxb,t/dt

Fw

cb ∆c(t)
Du

To address the challenges posed by complex sea states and
unpredictable  factors,  a  dynamic  damper  coefficient  is
deployed.  The  dynamic  damper  coefficient  influenced  by
stochastic  interference  is  modeled  as  a  time-dependent
random  variable,  denoted  as .  Its  stochastic  interference
term  is  represented  as ,  accounting  for  changes  in
unpredictable  environmental  conditions  and  the  operational
state  of  the  proposed  WEC.  Thus,  is  expressed  as

,  where  is  the  baseline  resistance
coefficient.  We  assume  that  the  stochastic  interference  term
follows a normal distribution . Regarding the
output  power  caused  by  wave  forces  applied  to  the  floating
buoy, denoted as , the velocity of the buoy  is obtained
by  differentiating  the  buoy’s  position .
Furthermore,  the  wave  force ,  derived  from  the  kinetic
equation,  is  used  to  represent  the  applied  wave  force,  as
described in Eq. (43). The resistance coefficient is denoted as

.  In this  context,  the randomized interference term is 
rather than . The wave force applied to the floating buoy is
defined as
 

Fw = f cos(ωt)− (c0+∆c(t))
dxb,t

dt
+D1 (43)

Pv
vv,t

Fs

Similarly,  let  denote  the  wave  power  of  the  vibrator,
with the corresponding velocity represented as . The spring
force  is given by
 

Fs = ks(xv,t − xb,t)− (cv+∆c(t))
(

dxv,t

dt
− dxb,t

dt

)
(44)

xb,t xv,t
ks cv

where  and  denote  the  displacements  of  the  floating
buoy and the vibrator, respectively. The parameters  and 
represent  the  stiffness  and  resistance  coefficients  of  the
vibrator.

Po Pf PvThus,  the  output  power  is  the  sum  of  and .  The
power-force relationship is clarified as
 

Pf = Fw · vb,t =[
f cos(ωt)− (c0+∆c(t))

dxb,t

dt
+D1

]
· dxb,t

dt
,

Pv = Fs · vv,t =[
ks(xv,t − xb,t)− (cv+∆c(t))

(
dxv,t

dt
− dxb,t

dt

)]
· dxv,t

dt

(45)

PoThen, the total output power  can be expressed as
 

Po = Pf +Pv =[
f cos(ωt)− (c0+∆c(t))

dxb,t

dt
+D1

]
· dxb,t

dt
+[

ks(xv,t − xb,t)− (cv+∆c(t))
(

dxv,t

dt
− dxb,t

dt

)]
· dxv,t

dt

(46)

Therefore, we establish the mathematical model concerning
the  output  energy  of  WEC.  The  highlight  of  our  proposed
formulation  is  the  inclusion  of  uncertainty  instead  of  single
energy  output  calculation,  as  well  as  the  chronological

complexity  is  considered,  which  makes  our  model  more
grounded.  As  for  the  case  of  fixed  coefficient,  it  can  be
regarded  as  a  special  situation  of  the  dynamic  damper
coefficient  strategy.  What  needed  to  the  deployment  of  the
model is to replace the corresponding parameters by constant.

µ = 0.01
N

|vb(t)|
r tf

0 µ ·N · |vb(t)|dt

Cf = 0.003 N/m2

dxb(t)/dtr tf
0 Cf ·

(
dxb(t)

dt

)2

dt Cd = 0.005 N/m4

d2xb(t)/dt2

r tf
0 Cd ·

(
d2xb(t)

dt2

)2

dt

Ch
h(t)

r tf
0 Ch ·h(t)2dt Ch 0.002 N/m2

r tf
0 Cj · |vb(t)|3dt Cj

0.04 N/m3

r tf
0 Ct ·T (t)2dt

Ct = 0.001 N/m2 T (t)

r tf
0 Ce ·E(t)dt E(t)

Ce = 0.01 N/m3

When  maximizing  the  power  generated  by  the  WEC,
systematic  fatigue  that  may  damage  the  system must  also  be
considered [32]. Therefore, optimizing systematic damage is a
worthwhile  endeavor.  The  friction  coefficient  is  given  as

,  with  the  force  on  the  floating  buoy  in  the
perpendicular direction denoted as . The motion velocity of
the  buoy  is  represented  as .  Consequently,  the  damage
caused by the friction between the water surface and the WEC
is  expressed  as .  For  systematic  fatigue
damage caused by material  loading,  its  coefficient  is  initially
set as , and it is related to the rate of change
of  position over  time .  Thus,  this  type of  damage is

expressed as . Let  be the

original  dynamic  damage coefficient.  The  acceleration  of  the
WEC  is  denoted  as .  The  dynamic  equipment
damage  due  to  acceleration  changes  is  expressed  as

. The damage caused by the ebb and flow

energy response is considered in this term. Since ocean waves
are highly volatile, damage caused by environmental elements
is inevitable.  With  representing the coefficient of damage
caused  by  waves  and  representing  wave  heights,  the
damage  caused  by  wave  environments  is  defined  as

,  where  the  initial  value  of  is .
Similarly,  the  influence  of  wave  shocks  is  accounted  by  the
term ,  where  is  the  damage  coefficient
related  to  shock  effects,  with  an  initial  value  of .
Thermodynamic  damage  due  to  comprehensive  effects,  such
as friction and material deformation, is considered in the term

,  where  the  thermodynamic  damage  coefficient
is  initially  set  as ,  and  represents  the
absolute temperature of the floating buoy. As long as friction
and  resistance  exist,  thermodynamic  damage  may  occur.
Finally,  damage  because  of  a  combination  of  other
environmental  factors,  such  as  salinity,  wind  speed,  and
similar  influences,  is  defined  as ,  where 
represents  the  wave  band  energy  density  associated  with
environmental  factors,  and  the  corresponding  coefficient  is
given as .

DOverall, the systematic damage of the WEC is denoted as 
and is expressed as
 

D =
w tf

0

(
µ ·N · |vb(t)|+Cf ·

(
dxb(t)

dt

)2

+Cd ·
(

d2xb(t)
dt2

)2

+

Ch ·h(t)2+Cj · |vb(t)|3+Ct ·T (t)2+Ce ·E(t)
)
dt

(47)

By establishing a model describing the damage of the WEC
in  power  generation,  nonlinear  and  unpredictable  factors  in
complex  systems  concerning  the  WEC  and  the  working
conditions that impact systematic damage are considered. This
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proposed multi-dimensional model provides a comprehensive
framework for damage analysis and evaluation.  

B.  Cost Function
Our  aim  is  the  simultaneous  maximization  of  the  output

energy  and  minimization  of  accumulated  damage  caused  by
the  work  of  WEC  and  the  unforeseeable  incidents  in  the
environment. In the establishment of model,  the formulations
of  output  power  and  systematic  damage  are  constructed.
Because of to the requirements of dual-objective optimization,
the  transformation  from the  systematic  physical  performance
to  the  mathematical  problem  is  crucial  to  realize  our
optimization objectives [36].

J1
Po Cd

Cs

Cd Cs

Cu
−

r tf
0 Po(t)dt

u(t)

tf
Cu

u(t) Cu

Let  be the cost function concerning the maximum of the
output energy . Define  as the damage coefficient related
to  the  velocity  of  the  buoy,  and  as  that  of  the  vibrator.
These two coefficients quantify the damage caused to both the
buoy  and  the  vibrator.  and  correspond  to  the  damage
weights  of  the  buoy  and  vibrator’s  velocity  squared  terms,
respectively,  and  are  equivalent  to  the  viscous  damping
coefficients  (N·s/m).  To  account  for  extra  energy  loss  that
captures mechanical damage and fatigue, this study introduces

 as  the  damage  coefficient  caused  by  input  power.
Moreover,  the  output  power  is  represented  as .
Where  taking  a  negative  value  is  convenient  for  maximizing
the  output  energy.  Define  as  an  adjustable  variable
representing  the  controllable  energy  applied  from  external
sources, with  denoting the end time of the WEC operation.
These parameters change dynamically in real-time. Herein, 
measures  the  additional  mechanical  wear  caused  by  external
control input. Since the  is measured in N, the unit of  is
J/N2.

e−λt J1 λ
e−λt s−1

J1

The device reacts differently to the external environment at
different  times.  Damage  to  equipment  is  superimposed  over
time,  and  its  marginal  rate  of  damage  continues  to  change
over  time  of  use.  Therefore,  when  analyzing  the  relationship
between WEC damage and its operational time, a time decay
factor  is  introduced  in .  Here,  is  the  velocity  rate
constant  of  with  the  unit  of ,  primarily  representing
the  incremental  rate  of  equipment  damage  over  time.
Consequently,  the  term  considering  damage  due  to  kinetic
factors in  with the time decay factor is expressed as
 w tf

0

(
Cde−λt

(
dxb,t

dt

)2

+Cse−λt
(

dxv,t

dt

)2

+Cue−λtu(t)2
)
dt.

h
(
xb(t), xv(t),u(t),

dxb,t

dt
,
dxv,t

dt

)
xb(t) xv(t) u(t)

h1 h2 h1
h2

Furthermore,  a  feedback  term  for  systematic  states  is
incorporated  to  provide  a  comprehensive  assessment  of
operational  states  and  working  conditions.  Define  a  state

variable  function ,  which
captures  the  intricate  correlation of  matching status  changing
over  time,  including , ,  and .  To  quantify
variations,  we  define  and .  Wherein,  expresses  the
squared  velocity  difference  (e.g.,  velocity  mismatch)  and 
represents the loss induced by input power.

Thus, Eq. (48) describes more complex relationships in the
system,  incorporating  multicollinearity  effects  among
variables.

 

h
(
xb(t), xv(t),u(t),

dxb,t

dt
,
dxv,t

dt

)
= h1

(
dxb,t

dt
,
dxv,t

dt

)
+h2(u(t))

(48)
vb

vv α

β α

β√(
dxb,t

dt
− dxv,t

dt

)2

+β(u(t))2dt α

β

Finally, the gap between the velocity of the buoy  and the
vibrator  is  measured  using  two  weight  coefficients  and

.  Here,  serves  as  an  operational  variable  to  control  the
impact  caused  by  different  changes  in  state  variables  and
input,  while  regulates  the  influence  on  overall  damage
caused  by  input  energy,  expressed  as

. In specific,  controls  the

weight  given  to  the  thermal-mechanical  coupling  damage
because  of  the  mechanism’s  kinematic  mismatch,  and 
balances  the  relative  contributions  of  the  velocity  difference
and control force components of the mismatch term, which are
controllable variables.

J1Hence,  can  be  formulated  as  Eq.  (49),  integrating  the
three aforementioned terms.
 

max Po,

s.t., min J1(x(t),u(t), tf) = −w tf

0

[(
( f cos(ωt)− (c0+∆c(t)))

dxb,t

dt
+D1

)
dxb,t

dt
+(

ks(xv,t − xb,t)− (cv+∆c(t))
(

dxv,t

dt
− dxb,t

dt

))
dxv,t

dt

]
dt+

w tf

0

[
Cde−λt

(
dxb,t

dt

)2

+Cse−λt
(

dxv,t

dt

)2

+Cue−λtu(t)2
]
dt+

α
w tf

0

√(
dxb,t

dt
− dxv,t

dt

)2

+β(u(t))2dt

(49)

J1Generally speaking,  encapsulates both the description of
power  output  and  systematic  state  feedback.  This  paper
integrates output power and seeks to maximize energy output.
Additionally,  a  more  comprehensive  formulation  of  the  cost
function accounts for discrepancies in the velocity of the buoy
and vibrator, based on the squared-root method. The influence
of input energy is also considered through this approach.

J2 L β
r tf

0 max{Cuu(t)2+Chh(t)2,0}dt

L α β

In  the  construction  of  the  cost  function  of  systematic
damage ,  two terms  and 
are considered as the dynamic damage and the quadratic form
of extra systematic damage, respectively. The term of damage

 is  caused  by  motion.  In  these  two  formulations,  and 
serve  as  normalizing  factors  for  making  the  corresponding
terms dimensionless.

xb

Cf ·
(

dxb,t

dt

)2

xv Cd ·
(

dxv,t

dt

)2

u(t) Cu
Cu(u(t))2

Cr

For  the  damage  because  of  the  velocity ,  the

corresponding  term  in  the  cost  function  is .

Similarly,  the  damage  caused  by  is .  For  a

coefficient of  input ,  which  causes  damage ,  a  term
 is  introduced  to  quantify  this  item  of  damage.  The

coefficient  of  systematic  damage  related  to  the  velocity
difference  in  the  relative  displacement  of  the  buoy  and
vibrator  is  defined  as .  This  type  of  damage  is  given  as
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Cr

(
dxv,t

dt
− dxb,t

dt

)2

Cr

(vv− vb)2 Cd

.  is  used to penalize the structural  shear
stresses generated by the relative velocity of the float-vibrator

 in the same units as .

L

Cuu(t)2+Chh(t)2

u(t)
h(t)

J2

Then,  integrating  the  term  accounting  for  damage  because
of wave height and the acceleration of the buoy into dynamic
damage,  the  term  is  finally  obtained.  Considering  the
nonlinear  relationships  between  the  damage  and  input,  the
damage  is  proportional  to  the  square  of  the  input.  The
expression  represents  the  damage  cost
function  concerning  the  association  between  input  and
wave  height .  Thus,  the  cost  function  of  systematic
damage  is defined as
 

J2(x(t),u(t), tf) = L+β
w tf

0
max{Cuu(t)2+Chh(t)2,0}dt (50)

with
 

L = α
w tf

0

[
Cf

(
dxb,t

dt

)2

+Cd

(
dxv,t

dt

)2

+Cu(u(t))2+

Cr

(
dxv,t

dt
− dxb,t

dt

)2

+Chh(t)2+Cj

∣∣∣∣∣∣d2xb,t

dt2

∣∣∣∣∣∣2
]
dt

(51)

J2Consequently,  the  cost  function  serves  as  a
comprehensive evaluation metric for predicting the systematic
damage  of  the  proposed  WEC,  considering  multiple
influencing factors under diverse scenarios.  

IV.  Methodology
  

A.  Runge-Kutta Method
Because  of  the  numerous  parameters  required  for  solving

the  WEC  model  under  volatile  working  conditions,  a  simple
direct solution is not feasible. Therefore, the RK-4 method is
chosen for  its  simplified  solution  approach.  The RK method,
which  can  be  implemented  through  software  simulations,
avoids  the  complexity  of  manual  solving.  This  method  is  an
iterative  technique  for  solving  nonlinear  ordinary  differential
equations,  offering  high  accuracy  by  using  the  Taylor’s
formula  and  slope  approximations  instead  of  differentiation.
Essentially,  the  fourth-order  Runge-Kutta  method  enhances
accuracy  by  calculating  multiple  slopes  per  step.  We use  the
dynamic damper coefficient as an example for demonstrating
the solution process.

h tn
tn+1 tn h yn
tn

k1
(tn,yn)

We set  and  as  the  step  size  and  time,  respectively,  as
well as the time value  as the sum of  and . Besides, 
is  the  value  in  time ,  which  also  represents  the  target
function.  Then  the  first  slope  is  calculated  as  Eq.  (52),
which expresses the change rate in point .
 

k1 = h f (tn,yn) (52)
k2 yn k1

tn+h/2
Thus, the second slope  is the  predicted based on  in

the place of , as shown in Eq. (53).
 

k2 = h f
(
tn+

h
2
,yn+

k1

2

)
(53)

k3Therefore, the third slope  is calculated based on Eq. (54).
 

k3 = h f
(
tn+

h
2
,yn+

k2

2

)
(54)

k4

Finally,  the  slope  calculation  is  completed  based  on  the
fourth slope , as defined in Eq. (55).
 

k4 = h f (tn+h,yn+ k3) (55)
yn

yn+1

Derived  from  the  calculation  of  slope,  is  updated  to
calculate .  This  process  is  described  in  Eq.  (56).  It  is
obvious  that  values  after  the  updated  step,  according  to
weights,  reflect  more  accurate  dynamic  changes.  Repeating
the above process,  iterating until  the end time is  reached, the
result is obtained.
 

yn+1 = yn+
1
6

(k1+2k2+2k3+ k4) (56)

The  dynamical  equations  about  the  floating  buoy  and  the
vibrator  have  already  been  established  in  the  problem
formulation  to  form  the  coupled  second-order  differential
equations,  which take into account the motion of the floating
buoy  under  the  action  of  waves,  including  the  hydrostatic
restoring  force,  additional  inertia  force,  the  hinged-wave
damping  force,  etc.  Moreover,  uncertainty  terms  are
simultaneously  included.  Based  on  the  above  model,  the
solutions  of  the  motion  models  of  the  floating  buoy  and
oscillator  are  obtained  according  to  the  RK-4  method.
Specifically,  the  method  is  utilized  to  transform  the  second-
order  differential  equations  into  the  first-order  differential
equations  for  solution,  and  iterative  solving  is  carried  out  to
compute the complete data of the displacement and velocity of
the  floating  buoy  and  vibrator  under  the  influence  of  waves
with respect to time.

u1 u2 w1 w2 p1 p2 q1 q2
u1 = x1,t

u2 = dx1,t/dt
w1

w2

Because of the classic RK method normally being applied to
solve  the  first-order  differential  equations,  we  convert  the
second-order  differential  equations  to  first-order  by
introducing  new  variables  for  obtaining  a  solution.  Let  new
variables  be  defined  as , , , , , , ,  and ,
thus the definition in Eq. (57) is set. The  in the first
term  is  the  motion  of  the  buoy,  and  the 
represents  the  velocity.  The  second  term  concerning  and

 corresponds  to  the  motion  and  velocity  of  the  vibrator,
respectively.  The  third  and  fourth  terms  denote  the  angular
displacement  and  velocity,  corresponding  to  the  buoy  and
vibrator.
 

u1 = x1,t, u2 =
dx1,t

dt
;

w1 = x2,t, w2 =
dx2,t

dt
;

p1 = θ1, p2 =
dθ1
dt

;

q1 = θ2, q2 =
dθ2
dt

(57)

Thus, a system of differential equations with reduced order
is obtained to facilitate subsequent calculations.

In our study, traditional Runge-Kutta methods are limited in
accuracy  and  adaptability  in  numerical  solving  due  to  the
fixed  step  size  and  order.  Therefore,  it  is  difficult  for  RK
method  to  capture  the  high-frequency,  nonlinear  fluctuations
in  volatile  sea  states  for  volatile  changes  may  be  skipped.
Therefore,  we  propose  the  dynamic  order  adaptive  Runge-
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Kutta  method,  which  dynamically  adjusts  both  the  step  size
and the integration order in response to local truncation error.
This  adaptive  mechanism  enables  finer  resolution  during
abrupt  wave  changing  to  preserve  numerical  stability,  while
coarsening  the  step  in  stable  conditions  to  improve
computational efficiency.

∆t
ζ

p
∆tnew

error
yh

yl error = |yh− yl|

To be specific,  let  a controllable variable be defined as ,
and  denote  as  the  corresponding  allowed  error  threshold.
The  parameter  represents  the  order  of  the  numerical
method,  thus  the  new  step  size  is  defined  in  Eq.  (58),
where the  is acquired based on the comparison between
the calculated high-order method  and the low-order method

: .
 

∆tnew = ∆t×
(
ζ

error

) 1
p+1

(58)

error ζ h
error > ζ h← βh, β < 1

h
h← γh, γ > 1

error

Comparing  the  with ,  the  step  size  is  decreased
when ,  which  is  noted  as .
Conversely,  to  increase  the  value  of ,  we  define

.  For  instance,  if  the  step  size  calculated  by
RK-4  results  in  excessively  large ,  a  smaller  step  size
shall  be  selected.  The  mechanism  functions  similarly  in  the
opposite  scenario.  This  is  the  core  mechanism  for  dynamic
order selection.

t0 y0
h ζ

error h p
(tn,yn)

tf

For implementation, the initial conditions  and , original
step  size ,  and  error  threshold  are  set.  The  calculation  is
then  performed  using  the  classic  RK-4  and  RK-5  methods.
After obtaining , the step size  and order  are adjusted
accordingly.  Finally,  the  state  variable  is  calculated
after iterations until the end time  is reached.

Thus, our proposed DOARK method achieves a more robust
balance  between  accuracy  and  computational  efficiency  by
introducing a dual adaptation mechanism, which dynamically
adjusts  both  integration  step  size  and  order.  Although  the
adaptive Runge-Kutta  methods have already been developed,
this  method  relies  solely  on  local  truncation  error  for  step
control  and  uses  a  fixed  order.  However,  our  proposed
DOARK  incorporates  environmental  volatility  as  an
additional feedback signal, enabling context-aware adaptation.
This  is  particularly  advantageous  in  wave  energy  systems,
where real-time wave conditions are inherently uncertain and
highly  non-stationary.  Under  volatile  sea  states,  DOARK
increases  resolution  through  reduced  step  sizes  and  higher-
order  integration,  thereby  suppressing  transient  errors  and
preserving  numerical  stability.  Conversely,  during  stable
periods,  it  coarsens  the  integration  to  avoid  redundant
computation, thus improving efficiency. As a result, DOARK
not  only  reduces  global  error  accumulation  but  also  better
supports the coupled control-dynamic system, making it more
suitable than classical RK methods for uncertainty-driven and
feedback-sensitive systems, such as WECs.

Unlike  traditional  adaptive  Runge-Kutta  methods  that  rely
solely  on  local  truncation  error  and  fixed  integration  order,
such  as  Runge-Kutta-Fehlberg-45  (RKF-45),  which  adjusts
only  the  step  size  based  on  local  error  estimations.  DOARK
introduces a dual-adaptation mechanism that adjusts both step
size and integration order in real time. This enables it to better
capture  fast-changing  system  dynamics  and  nonlinear

stiffness.  Moreover,  DOARK  integrates  environmental
volatility  as  an  additional  input  signal  for  solver  adjustment,
allowing  the  algorithm  to  respond  contextually  to  transient
disturbances.  This  enhances  its  sensitivity  to  abrupt  kinetic
transitions  and  significantly  improves  numerical  robustness
and  resolution  accuracy  in  wave-dominated  and  uncertainty-
prone systems.  

B.  Adaptive Step Size Search
To calculate  the maximum output  power of  the device,  the

optimum damping coefficient  must  be  determined.  When the
damping  coefficient  is  fixed,  an  adaptive  step  size  searching
algorithm  is  employed  to  solve  the  single-parameter
optimization  equation.  This  involves  setting  the  damping
coefficient  range  and  initial  step  size,  then  iterating  over  the
range  and  calculating  the  average  output  power  for  each
damping  coefficient.  The  step  size  is  adjusted  based  on  the
solved interval,  with  larger  step  sizes  for  wider  intervals  and
smaller ones as the interval narrows. For dynamic coefficients,
the  damping  is  proportional  to  the  exponentiation  of  the
relative velocities between the floating body and the vibrator,
with  a  range  for  both  proportionality  and  exponentiation.  In
this  case,  a  dual  parameter  optimization  is  required  for  both
damping  and  scaling  coefficients.  A  double  loop  is  used  to
explore  all  possible  combinations,  and  for  each,  the  average
output  power  is  calculated  using  the  Runge-Kutta  method
along  with  the  adaptive  step  size  strategy.  The  combination
yielding  the  highest  output  power  is  selected.  The
proportionality is ranged from 0 to 100,000 while the range of
exponentiation  is  (0,1).  For  finer  optimization,  the  optimal
damping  coefficients  for  both  linear  and  rotary  dampers  are
considered. We observe that when the damping coefficient is
between 95,000 and 10,000,  and the  power  index is  between
0.4  and  0.5,  the  optimal  power  change  rate  is  minimal,
suggesting  that  the  adaptive  step  size  algorithm  may  not
provide  the  desired  accuracy.  Thus,  the  simulated  annealing
algorithm is a more suitable method for this case.  

C.  Multi-Objective Optimization

Po
D

As the WEC model is enhanced and a more accurate output
energy  is  calculated  with  DOARK,  multi-objective
optimization  for  energy  generation  and  equipment  damage
shall  be  conducted.  Multi-objective  optimization  refers  to
mathematical  optimization  problems  that  involve  the
optimization  of  multiple  objective  functions  simultaneously.
In  this  work,  the  maximum  output  power  and  the
minimum systematic damage  are considered synchronously
as  two objective  functions.  In  multi-objective  optimization,  a
dynamic  balance  between  objectives  with  diverse
characteristics  must  be  achieved [37].  Commonly,  multiple
objectives may even conflict with each other.

Po D

Hence,  the  multi-objective  constraint  method,  which
converts  multi-objective  problems  into  single-objective
optimization problems, is a reasonable approach. Specifically,
we  select  one  objective  as  the  primary  objective  function,
while  the  other  is  used  as  a  constraint  condition.  Herein,  the
primary objective is  to  maximize ,  while  minimizing  is
designed as a constraint.
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D
Dmax

For systematic damage , it must be constrained within the
tolerance  range  to  ensure  the  long-term  stability  and
reliability  of  the  WEC system.  Based  on  the  selection  of  the
primary objective  and constraints,  we establish  the  following
optimization problem.
 

min Po,

s.t., D ⩽ Dmax
(59)

Thus,  output  power is  enhanced as  much as  possible  while
ensuring that systematic damage remains within the tolerance
range  to  balance  the  trade-off  between  power  output  and
damage.

Po D

Po D
J1 J2

J1 J2
min

u
(J1, J2)

Since the physical  characteristics of  and  are difficult
to  optimize  on  the  same  scale  because  of  computational
challenges,  a  transformation  is  required.  Therefore,
mathematical  analysis  and  strategic  support  are  taken  into
account,  leading  to  the  conversion  of  and  into  cost
functions  and ,  respectively.  The  objective  is  to
minimize  both  and  under  the  given  constraints,  i.e.,

.
However,  multi-objective  optimization  problems  generally

do  not  have  a  unique  solution,  as  multiple  Pareto-optimal
solutions  exist.  To  resolve  conflicts  between  objectives  and
determine  Pareto-optimal  solutions,  the  general  form  of  a
multi-objective problem is given in Formula (60).
 

min {J1, J2, ..., Jk},
s.t., x ∈ Z

(60)

{J1, J2, . . . , Jk} x
Z

where  are the objective functions,  represents
the set of decision variables, and  denotes a set of constraints
[34].

εWe  utilize  the -constraint  method  to  solve  the  multi-
objective problem. Its principal idea is to select one objective
function as the primary optimization target, while treating the
other  objective  functions  as  constraints [38, 39].  This
reformulates  the  multi-objective  optimization  problem  as
Formula (61).
 

min J1,

s.t., J2 ⩾ ε2,

J3 ⩾ ε3,

...

Jk ⩾ εk,

x ∈ Z

(61)

ε

k−1
Po

D

ε

(0,1)
Ĵk

Based on the application of the -constraint method, one of
the  objectives  is  treated  as  the  main  parameter,  while  the
remaining  objectives  are  considered  constraints.  We
select  the  maximum  power  output  as  the  primary
objective,  while  the  minimum  systematic  damage  is
constrained.  Hence,  the  Pareto  set  is  obtained  for  the  multi-
objective problem by finding a suitable parameter .  For this
reason,  we adopt  a  fuzzy-based decision-making approach to
identify  the  leading  solution  from  the  Pareto  set.  The  set  in

 represents  alternative  solutions [39].  The  fuzzy
membership function for objective  is defined as Eq. (62).
 

Ĵk =


1, Jk ⩽ JLow

k ;
Jmax

k − Jk

Jmax
k − Jmin

k

, JLow
k ⩽ Jk ⩽ JUp

k ;

0, Jk ⩾ JUp
k

(62)

Ĵk
Jmin

k Jmax
k

where  denotes  the  normalized  objective  function,  with  its
minimum  and  maximum  limits  given  by  and ,
respectively.

To determine the optimal solution, the mix-min technique is
applied  to  select  the  best  solution  from  the  Pareto  set,  as
described in Eq. (63).
 

Solution =max

min


Ĵ1
Ĵ2
...

Ĵk


 (63)

We  conduct  dual-objective  optimization  by  simulation  in
three  different  scenarios.  The  uncertainty  of  unstable  water
region has been considered in the multi-objective problem. To
do  so,  Monte-Carlo  simulation  is  used  to  generate 1000
scenarios. We select the three representative scenarios that are
corresponding  to  stable  sea  condition,  normal  sea  condition,
and  volatile  sea  condition,  respectively.  The  wave  data  are
constructed based on a database collected by US Water Power
Technologies  Office  integrated  with  Ref. [40].  Meanwhile,
wave conditions collected in our laboratories are also included
in  this  database.  Thus,  a  custom  database  is  constructed  for
simulation.  Our  data  contain  wave  conditions  of  more  than
40,000 time points. We perform the filtration for the database
to  select  data  to  construct  the  three  different  scenarios  in  the
process of simulation. Most of the characteristics are based on
the  west  coast  of  America.  Our  analysis  is  based  on  a  wide
range  of  sea  state  scenarios  including  stable,  normal,  and
volatile  conditions  of  the  classic  study  case.  Combined  with
Monte-Carlo  simulations,  the  generalization  is  proven  rather
than improvements in specific or idealized conditions.

S (t) = ||[h(t),Pw(t),Vg(t)]||2

A1 ω1
ω

D1 D4 σ

Du
c(t) = c0+ kPw(t)

We rank the original observation by the composite intensity
,  corresponding  to  instantaneous

wave height, theoretical wave power density, and gust speed,
respectively.  Wherein,  3  percentiles  are  defined  as  scenarios
I–III,  corresponding  to  stable,  normal,  and  volatile  marine
conditions.  More  than  200  consecutive  100  s  clips  are
extracted  from  each  segment,  and  the  first  four  peaks  are
extracted  by  fast  Fourier  transform  (FFT)  for  each  of  them.
Then,  the  first  peak  amplitude  and  frequency  are
injected  into  the  model  external  excitation fcos t,  the
remaining  three  peaks  are  assigned  to  the  perturbation  term

– , and the standard deviation of the residuals  is given
as Gaussian noise . Then, we schedule the adaptive damper
via  with k tuned  under  the  damage  cap.
Each  scenario  undergoes 1000 Monte-Carlo  runs  in  the
DOARK solver to quantify power yield and safety margin.

εAfter  then,  the  multi-objective  problem  is  solved  by -
constraint  as  the  best  comprise  acquired  by  this  method.  To
find  the  optimal  Pareto  compromise,  we  utilize  the  fuzzy
membership function, as our early research [39].  
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V.  Experiment
  

A.  Comparison Analysis of the Optimized Model
To  prove  the  utilization  of  our  proposed  model  with

uncertainty,  we  compare  the  performance  of  original  model
with the model with uncertainty. As the accuracy of the model
with  uncertainty  verified,  the  traditional  RK-4  and  the
DOARK  are  applied  respectively,  whose  performances  are
then  compared.  We  compare  the  simulated  results  with  the
ground  truth  collected  in  real  experimental  field  for  proving
the performance.

The numerical  implementations are performed with Python
and  the  PyDSTool  package  is  utilized  for  simulation  and
calculation. PyDSTool is an efficient tool based on the Python
to obtain the solution for dynamic system, which is significant
in solving differential equations in particular [41]. Besides, the
scipy.signal  is  utilized  for  frequency  domain  analysis.
Additionally,  PyFOAM,  which  is  a  Python  tool  based  on
OpenFOAM,  is  also  involved  in  sea  conditions.  After
determining  the  input  parameters  and  data,  the  Monte-Carlo
simulation  is  used  to  generate  abundant  scenario  about  the
work  condition  of  WEC  for  obtaining  the  optimal  value  of
physical  coefficient.  The  marine  conditions  manufactured  in
our  grounded  platform  are  also  referred  by  the  simulation
system  in  computer.  Moreover,  the  CPU  utilized  for
experiment  is  the  13th  Gen  Intel(R)  Core(TM)  i7-13650HX
2.60 GHz and the RAM of our experimental platform is 16.0
GB.  The  simulated  annealing  algorithm  is  a  stochastic
optimization  search  algorithm  based  on  an  iterative  solution
strategy.

Some  critical  parameters  not  explicitly  mentioned  but
essential for the simulation setup are listed in Table 1.

Cf Cd

Key  parameters  such  as  buoy  mass,  bottom  radius,
cylindrical,  conical  part  heights,  etc.,  serve  as  fundamental
inputs. Additionally, derived quantities, including the volume
of  the  buoy’s  cylindrical  and  conical  sections,  as  well  as  the
draft  and  initial  equilibrium  position  of  the  vibrating
component,  are  determined  based  on  the  classical  physical
principles.  To  investigate  different  dynamic  scenarios,  two
cases are considered in the simulation. In case 1, the damping
coefficient remains fixed, whereas in case 2, it is dynamically
adjusted.  Furthermore,  the  optimal  initial  values  of  critical
physical coefficients, such as  and , are obtained through
the simulation process.

The  comparison  between  the  errors  of  calculated  kinetic
characteristics under the wave conditions given in our ground
experimental  platform  of  the  original  model  and  the  model
with uncertainty is depicted in Fig. 3. The errors are measured
by the mean square error (MSE) between the calculated values
and  the  ground  truth.  It  is  obvious  that  our  proposed  model
with  uncertainty  has  overwhelming advantages  in  calculating
the  kinetic  characteristics  of  the  WEC.  For  instance,  in  the
case of the pendulum velocity of the vibrator, the introduction
of  uncertainty  makes  the  error  decrease  from  246.50  to
216.35,  achieving  a  reduction  magnitude  of  30.  The  results
suggest that the model is optimized in terms of the accuracy of
kinetic  characteristic  calculations  for  our  proposed  system.
Particularly,  for  parameters  related  to  velocity,  the

improvements  are  significantly  more  pronounced.  In
summary,  the  consideration  of  uncertainty  makes  the  model
more  accurate  when  describing  the  system’s  kinetic
characteristics,  as  more  interference  from  unpredictable
factors  in  the  ground  experiment  is  quantified  by  the
aforementioned established index.

Both  of  the  two  models  are  solved  with  the  conventional
forth-order  RK method and the output  power within 100 s  is
calculated.  The  comparison  analysis  of  the  proposed
optimization model obtained is depicted in Fig. 4. Comparing
the performance of the original model with that of the model
with  uncertainty  under  case  1  and  case  2,  the  model  with
uncertainty  shows  significant  advantages  in  fitting  accuracy,
error  distribution,  and  stability.  Specifically,  the  model  with
uncertainty’s  calculated  power  output  matches  the  ground
truth  significantly,  especially  in  the  peak  power  stage  e.g.,
0–20  s,  where  the  numeric  results  of  peak,  amplitude,  and
distribution  trend  accurately  reflect  the  power  change
characteristics  of  the  actual  wave  energy  device  whereas  the
original  model  shows obvious deviations in this  stage,  which
are manifested in the peak prediction of the peaks with more
unacceptable  miscalculations.  In  the  perspective  of  error
distribution,  the  model  with  uncertainty  prevails  with  a
smaller  error  amplitude  and  a  more  uniform  distribution
comparing with original model, especially in the peak stage of
drastic  power  changes.  Meanwhile,  the  prediction  results  of
model with uncertainty are superior in robustness. In contrast,
the  original  model  has  significant  error  fluctuations  in  the
peak  stage  while  the  unstable  prediction  results  indicate  its
lack  of  stability  and  accuracy.  In  addition,  the  model  with
uncertainty is more prominent in the physical meaning, which
can  more  accurately  capture  the  dynamic  power  output

 

Table 1 Setting parameter for testing.
Specification Parameter

Buoy mass 4866 kg

Buoy bottom radius 1 m

Buoy cylindrical part height 3 m

Buoy conical part height 0.8 m

Volume of buoy cylindrical part 9.42 m3

Volume of buoy conical part height 0.83 m3

Draft of buoy conical part height 2 m

Vibrating mass 2433 kg

Vibrating radius 0.5 m

Vibrating height 0.5 m

Seawater density 1025 kg/m3

Gravitational acceleration 9.3 m/s2

Spring stiffness 80,000 N/m

Spring length 0.5 m

Initial spring compression 0.298 m

Rotational spring stiffness 250,000 N·m

Static hydrostatic recovery stiffness coefficient 8890.8 N·m

Initial linear damping coefficient 10,000

Range of damping coefficient [0, 100,000]
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characteristics  of  wave  energy  devices  and  not  solely  can  its
prediction  results  describe  the  physical  characteristic  of  peak

distribution  and  trend  changes,  but  also  provide  more
scientific data support for the optimal design and performance
evaluation  of  the  devices.  Generally  speaking,  it  can  be
referred from Fig. 4 that the proposed model with uncertainty
is  superior  to  the  original  model  with  a  higher  accuracy,
robustness, and applicability, which provides a more scientific
and efficient tool for the modeling of wave energy devices and
is an ideal choice for further research simultaneously.

The comparison of error variations between the two models
under wave conditions in our ground experimental platform is
illustrated in Fig. 5. As shown in Fig. 5(a), regardless of case
1  or  case  2,  the  errors  of  the  original  model  exhibit  larger
initial  deviations  compared  with  the  model  with  uncertainty.
Additionally, the error increases progressively over time, with
pronounced  oscillations  throughout  the  time  series.  This
suggests  that  the  original  model  struggles  to  capture  the
fluctuation patterns smoothly.

In  contrast,  as  depicted  in Fig.  5(b),  the  introduction  of
uncertainty  significantly  reduces  the  errors  within  a  shorter
time  span.  Specifically,  in  both  case  1  and  case  2,  the  peak
errors are mitigated to approximately 50 W, indicating that the
model  with uncertainty captures  the dynamic behavior  of  the
WEC  at  high  power  outputs  with  superior  accuracy.  As  the
time  series  progress,  the  error  magnitude  of  the  uncertainty-
integrated  model  continues  to  decline,  demonstrating  a  more
uniform  distribution  and  eventual  convergence  toward  zero.
Compared with the original  model,  the uncertainty-integrated
model exhibits a reduced fluctuation amplitude, particularly in
case 2, underscoring its enhanced accuracy and stability under
complex fluctuating conditions.

Table 2 presents the total  mean squared error of the output
power  for  both  models  in  case  1  and  case  2.  In  case  1,  the
prediction  capabilities  of  the  two  models  are  quantified  as
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Figure 3 Demonstration  of  errors  of  the  two  models’ calculated  kinetic
characteristics.
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Figure 5 Error changes of the two models within 100 s.
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Figure 4 Comparison  of  two  proposed  models  solved  with  the  conventional
fourth-order Runge-Kutta method.
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2110.0118 and 2014.1258,  respectively.  The  discrepancy
between the two models is minimal, and the optimized model
achieving  a  reduction  of  4.54% in  MSE.  This  suggests  that
under  simple conditions,  the  performance difference between
the two models is relatively insignificant. However, under the
more complex conditions of case 2, the deviation between the
two  models  becomes  significantly  larger,  with  the  optimized
model achieving a remarkable 74.98% reduction in MSE. The
MSE  of  the  uncertainty-integrated  model  is  more  than  four
times  lower  than  that  of  the  original  model,  demonstrating  a
substantial improvement in its ability to capture the dynamics
of  the  power  output  under  fluctuating  conditions  as  the
dynamic damper coefficient is a common situation.
 
 

Table 2 MSE of output power in case 1 and case 2 of original model
and model with uncertainty.

Model MSE in case 1 MSE in case 2

Original model 2110.0118 7038.0788

Model with uncertainty 2014.1258 1761.0898

 
Generally  speaking,  in  the  traditional  WEC  modeling,

system  motions  are  often  assumed  to  be  subjected  to  ideal
influence,  and  high-frequency  disturbances,  wave
superposition  effects,  and  sudden  external  perturbations
prevalent  in  the  marine  environment  are  neglected.  In  our
study,  the  ability  of  the  model  to  fit  the  nonlinear  response
behavior  under  real  sea  states  is  enhanced  by  constructing
multiple  perturbation  terms  and  introducing  nondeterministic
disturbance factors into the system dynamics equations. These
perturbation  terms,  formed  by  time-varying  sinusoidal
components  and  Gaussian  noise,  allow  the  model  to  reflect
non-stationary  dynamic  characteristics  more  accurately.  This
uncertainty-integrated structure not only improves the realism
of input excitation but also enhances the model’s sensitivity to
transient kinetic changes. As a result, the numerical solver can
better track local gradient variations and dynamic transitions,
especially  in  high-energy  intervals  such  as  0–20  s.  The
dynamic coupling introduced by stochastic terms improves the
phase  alignment,  amplitude  fidelity,  and  stability  of  output
power  predictions.  Therefore,  the  model  with  uncertainty
achieves  stronger  consistency  with  ground  truth  data  in  both
steady  and  volatile  sea  conditions,  providing  a  more  robust
foundation  for  performance  evaluation  and  control
optimization.  

B.  Performance Analysis of DOARK
To  illustrate  the  system’s  behavior,  we  present  the  motion

responses of the buoy and vibrator. For the initial analysis, we
consider the case, in which the WEC undergoes only pendular
motion.  The  displacement  and  velocity  of  the  buoy  and
vibrator  in  the  pendular  mode  are  computed,  and  the
corresponding results are depicted in Fig. 6.

When  incorporating  oscillatory  motion,  a  more  realistic
scenario,  the  displacement  and  velocity  of  the  buoy  and
vibrator  are  further  computed,  building  upon  the  previously
obtained  pendular  motion  results.  The  discrepancies  between
the  computed  values  and  the  ground  truth  are  illustrated  in

Figs.  7 and 8.  Specifically, Fig.  7 presents  the  simulation
results  obtained  using  the  RK-4  method,  whereas Fig.  8
depicts  the  corresponding  results  using  DOARK.  A
comparative analysis reveals that the RK-4 algorithm exhibits
a  larger  error  margin  and  higher  oscillation  amplitude,
particularly  evident  in  the  fluctuations  of  displacement  and
velocity curves. In contrast, DOARK demonstrates a smoother
error  profile  and  is  more  effective  in  maintaining  a  lower
cumulative  error  over  extended  time  steps.  This  outcome
highlights  the  adaptive  step-size  adjustment  feature  of
DOARK,  which  enables  it  to  dynamically  fine-tune  internal
parameters  for  improved  accuracy  in  complex  dynamic
systems.

The  superiority  of  DOARK  is  further  substantiated  by  the
error  metrics  presented  in Table  3.  When  modeling  the
physical motion of the WEC, DOARK achieves a lower MSE
of  61.65,  which  is  approximately  8% lower  than  that  of  the
RK-4 method.  Although both algorithms exhibit  higher  MSE
values  when  solving  oscillatory  angular  motion  compared
with pure pendular motion, DOARK consistently outperforms
RK-4  across  all  scenarios.  This  indicates  that  while  the
performance  difference  between  the  two  algorithms  is
marginal  in  single-dimensional  simple  motions,  DOARK
demonstrates  significant  advantages  in  handling  multi-
dimensional  dynamic  interactions.  Consequently,  the
proposed DOARK algorithm is more effective than traditional
methods  in  capturing  the  complex  physical  characteristics  of
WECs, making it a robust tool for accurate motion simulation
in marine energy applications.

Based  on  the  computed  pendulum  displacement,  velocity,
oscillatory angular displacement, and velocity of the buoy and
vibrator,  the  corresponding  output  energy  is  obtained.  The
DOARK algorithm is applied to solve the model incorporating
uncertainty in output energy, with results presented in Figs. 9
and 10.

As  shown  in Fig.  9,  the  predicted  output  progressively
converges  to  the  ground  truth  across  the  entire  100  s  time
series. The accuracy of the computed output in case 1 and case
2  demonstrates  a  notable  improvement  compared  with  the
results  in Fig.  4,  indicating  that  DOARK  enhances  overall
accuracy  in  handling  both  simple  fixed  damping  coefficient
cases and complex dynamic damping coefficient scenarios.

Furthermore, the MSE of the output energy, computed using
DOARK,  is  approximately 1761.0996 for  case  1  and
1596.8001 for  case  2,  as  summarized  in Table  4.  Compared
with the fourth-order Runge-Kutta method, DOARK achieves
12.56% and 9.36% reductions in MSE for case 1 and case 2,
respectively.  The  simulation  results  exhibit  strong  agreement
with the ground truth, further validating the robustness of the
proposed approach.

As illustrated in Fig. 10, the error associated with DOARK
exhibits a decreasing trend and stabilizes around 50 s, whereas
in Fig. 9, this stabilization occurs at approximately 60 s. This
observation  suggests  that  DOARK  outperforms  the
conventional  fourth-order  Runge-Kutta  method  in  terms  of
convergence  speed,  reinforcing  its  effectiveness  in  solving
complex dynamical systems.

These  errors  primarily  result  from  the  inability  of  the
classical  RK  method  to  track  sudden  dynamic  shifts,  as  it
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lacks  order  adaptation  and  relies  solely  on  error-based  step
control.  Classical  adaptive  RK  methods  often  exhibit
integration lag and underpredict nonlinear oscillations in such
conditions.

The  amount  of  time  taken  and  the  capabilities  of  the
machine occupied to run an algorithm are critical indicators to
analyze  the  convergence  performance.  We  record  the  time
consumed  to  run  the  two  algorithms  aforementioned.  We
conduct  the  two  algorithms  for  100  times  and  record  the
average  time  used  for  running  this  algorithm  for  solving  the
model  with  uncertainty  in  the  perspective  of  kinetic
characteristic  and  energy  output.  Meanwhile,  we  also
demonstrate  the  RAM  utilized  for  the  computation.  The
proposed DOARK used 2.01 s to run while the time consumed
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Figure 6 Pendular  velocity and displacement  of  the buoy and vibrator  under
the case that only pendular motion is considered.
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Figure 7 Error  between  calculated  by  RK-4  and  ground  truth  concerning
pendulum  displacement,  velocity,  oscillatory  angular  displacement,  and
velocity of the buyo and vibrator.
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for  running  the  conventional  RK-4  method  is  2.28  s.  The
RAM occupied for conducting the DOARK and RK-4 method
are  175.41  and  178.02  MB,  respectively.  The  DOARK
realizes  the  significant  enhancement  of  its  accuracy  with
1.47% less  resources.  To  sum  up,  even  though  taking  the
complexity  into  consideration,  our  proposed  DOARK  is  still
ideal in solving the WEC model with fabulous efficiency.

The  proposed  DOARK  algorithm  demonstrates  significant
advantages  over  the  traditional  RK  method.  DOARK
dynamically  adjusts  both  the  integration  step  size  and  the

order  based  on  local  truncation  errors  and  environmental
volatility  instead  of  RK,  which  is  based  on  a  fixed  step  size
and  order.  Specifically,  DOARK  employs  an  embedded  pair
of RK formulas of different orders to estimate the local error
at each step and modifies the step size accordingly to keep the
error  within  a  predefined  threshold.  Moreover,  in  highly
dynamic regimes, the algorithm increases the integration order
to better resolve stiff or rapidly changing dynamics. While in

 

Table 3 Comparison of MSE between RK-4 method and DOARK.

Item 1×10−5
RK-4

( ) 1×10−5
DOARK

( )

Pendulum displacement of buoy 60.73 55.80

Pendulum displacement of vibrator 71.66 64.97

Pendulum velocity of buoy 177.82 164.71

Pendulum velocity of vibrator 216.35 197.48
Oscillatory angular displacement of

buoy 1.32 1.21

Oscillatory angular displacement of
vibrator 1.62 1.49

Oscillatory angular velocity of buoy 3.65 3.35

Oscillatory angular velocity of vibrator 4.60 4.21

Average 67.22 61.65
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Figure 8 Error  between  calculated  by  DOARK and  ground  truth  concerning
pendulum  displacement,  velocity,  oscillatory  angular  displacement,  and
velocity of the buyo and vibrator.
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Figure 9 Result  of  output  energy  of  the  optimized  WEC model  solved  with
DOARK.
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Figure 10 Error changes of the two models within 100 s of DOARK.

 

Table 4 MSE of output power in case 1 and case 2 calculated by RK-
4 and DOARK.

Method MSE in case 1 MSE in case 2

RK-4 2014.1258 1761.0898

DOARK 1761.0996 1596.8001
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smoother regions, it lowers the order to reduce computational
cost. This two-level adaptation mechanism allows DOARK to
efficiently  capture  high-frequency  and  nonlinear  system
behaviors,  while  redundant  computations  during  stable
conditions  are  also  reduced.  Additionally,  environmental
volatility  metrics  are  used  as  an  auxiliary  signal  to  guide  the
adjustment  process,  ensuring  context-aware  solver  behavior.
As  a  result,  DOARK  achieves  an  optimal  balance  between
numerical  precision  and  computational  efficiency,  making  it
particularly  well-suited  for  simulating  complex  and
uncertainty-driven ocean environments.

To  further  validate  the  error  control  capability  of  the
DOARK  method  under  complex  disturbance  conditions,  we
randomly selected 100 time points  and added disturbances at
five  time  points  to  simulate  sudden  changes  in  the
environment.  We  selected  RKF-45,  a  typical  traditional
adaptive  RK method,  as  the  comparison object.  As shown in
Fig. 11, although the errors of both methods remain low in the
non-disturbance  phase,  the  DOARK  method  significantly
suppresses  the  error  peaks  in  each  disturbance  interval.  The
maximum error of the RKF-45 method is 194.7 W, while that
of the DOARK method is only 119.5 W, which is a reduction
of error by 38.6%. The results show that the DOARK method
has better adaptive ability and robustness in dealing with non-
smooth inputs and fast perturbation responses, and effectively
makes  up  for  the  shortcoming  of  the  traditional  method  in
adjusting the step-size lag under transient perturbations.

We assume that damping and restoring forces in the system
vary  nonlinearly  with  state  changes,  which  imposes  strict
requirements on integration accuracy. In particular, sharp and
transient  dynamics  are  often  missed  by  traditional  Runge-
Kutta methods because of their fixed integration structure. To
evaluate  this,  we  introduced  synthetic  high-frequency
perturbations  at  specific  time  intervals  to  simulate  abrupt
wave  conditions.  The  results  show  that  DOARK,  with  its
dynamic  order  and  step-size  adjustment  mechanism,
significantly  improves  numerical  stability  and  resolution  in
these  disturbed  regions,  especially  near  resonance  or  under
sudden excitations. This adaptive flexibility is the key reason
for  its  superior  performance  in  solving  the  highly  nonlinear
WEC systems.

In  conclusion,  the  comparison  results  demonstrate  that  the
proposed  DOARK  algorithm  significantly  improves  both
accuracy and convergence over the conventional fourth-order
Runge-Kutta  method,  and  better  captures  the  physical
coupling  features  of  the  WEC  system.  In  particular,  under
multiple  externally  imposed  wave  disturbances,  DOARK
consistently yields lower absolute errors compared with RKF-
45,  with  the  maximum  error  reduced  from  194.7  to  119.5.

This is attributed to its ability to dynamically adjust both step
size  and  integration  order,  enabling  finer  resolution  near
abrupt  system  changes.  Although  DOARK  incurs  moderate
computational  overhead,  it  provides  greater  numerical
stability,  physical  consistency,  and  robustness  under
fluctuating marine conditions.  

C.  Result of Optimization
Figure  12 demonstrates  the  Pareto  solution  for  the  multi-

objective  optimization  in  three  different  scenarios.  It  can  be
observed  that  as  the  complexity  of  the  wave  conditions
increases,  the  systematic  damage  becomes  more  intensive,
while the output power also increases.

In  scenario  1,  the  unit  systematic  damage  of  64.55  is
associated with an output power of 9.54 W. For scenario 2, a
similar  output  power  corresponds  to  a  systematic  damage
value of 128.18, and this number reaches 150.44 in scenario 3.

Moreover, it can be concluded that the upper bound range of
both  output  power  and  systematic  damage  expands  with
increasing complexity.

D̃ and P̃ ∈ [0,1]
(0,0)

L∞

Consider  the  two  normalized  objectives  of  each  Pareto
solution  acquired  based  on  simulation, ,  as  a
two-dimensional vector, with the ideal point at . The best
compromise  solution  is  the  point  in  this  vector  space  that
minimizes  the  norm,  such  as  the  Chebyshev  distance  to
the ideal point. Equivalently, it minimizes the worst deviation
of  both  metrics  and  thus  achieves  an  automatic  balance
without  subjective  weighting.  Ultimately,  the  scenario  with
the largest  combined trade-off  is  chosen to be the best  trade-
off solution in the Pareto frontier, which is marked in Fig. 12.
Based  on  the  optimal  solution  in Fig.  12,  as  the  sea  state
changes  over  time,  the  Pareto  front  of  the  optimum  control
problem  also  evolves.  The  Pareto  front  appears  steeper  in
regions where the damage value is low, indicating that greater
power  output  can  be  achieved  with  lower  damage  in  these
conditions.

This suggests that in rough sea conditions, the system must
tolerate  greater  damage to maintain an output  power close to
that of a stable sea scenario. This occurs because of the higher
availability of  wave energy resources,  which results  in larger
wave heights and more volatile wave frequencies.

Cu u(t)

To cope with increasing systematic damage, a conventional
control  strategy  is  employed  to  stabilize  the  system.  In
particular, damper coefficients are adjusted to limit the output
power, while parameters related to systematic damage, such as

 and , are reduced to regulate the input energy.
α βSimilarly, coefficients  and  are also controlled. Most of

these  variables  are  associated  with  lower  output  power,
emphasizing  the  trade-off  between  energy  extraction  and
structural  endurance.  Furthermore,  excessive  mechanical
system  damage  results  in  low  energy  generation  efficiency.
Thus,  in  the  proposed  optimization  method,  coefficients
influencing output power and systematic damage are designed
to be adjustable.

The  results  in Fig.  12 support  the  proposed  model’s
superiority  in  flexibility,  demonstrating  its  effectiveness  in
adapting to varying wave conditions.

Figure  13 illustrates  the  results  of  the  control  strategy
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Figure 11 Error change of the RKF-45 and DOARK with disturb added.
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applied  to  the  damper  coefficients.  Both  of  the  rotation  and
linear damper obey this founded rule. It  can be observed that
in  volatile  sea  states,  the  peak  values  of  output  power  are
achieved with lower damper coefficient values compared with
those  in  stable  conditions.  However,  in  scenario  3,  the
attenuation  trend  of  the  output  power  becomes  more
pronounced  with  increasing  damper  coefficients,  which  is
more significant compared with scenario 1 and scenario 2.

This trend exhibits similarities across both linear and rotary
dampers, suggesting a consistent relationship between damper

coefficients  and  output  power.  Based  on  the  simulation
results, it can be inferred that higher damper coefficient values
are  associated  with  more  intensive  systematic  damage,  and
this  correlation  is  more  pronounced  under  complex  wave
conditions.  Furthermore,  higher  wave volatility  is  linked to  a
simultaneous  rapid  increase  in  both  output  power  and
systematic damage.

Therefore, in scenario 3, which represents a highly unstable
condition,  a  lower  damper  coefficient  strategy is  preferred to
protect the WEC from excessive damage.

Figure  14 depicts  the  results  of  optimization.  It  can  be
inferred  that  the  improvement  is  larger  in  the  volatile
operational  conditions  than  that  of  in  stable  situations.  The
output energy is optimized with a level of 12.34% in scenario
3 while the optimizations are 7.52% and 6.71% in scenario 2
and  scenario  1,  respectively.  For  systematic  damage,  the
optimization  effect  is  more  significant  in  scenario  3,  which
possesses  a  harsh  condition.  Before  the  application  of  multi-
objective  robust-stochastic  strategy,  the  value  of  systematic
damage is 178.37 and it is 150.44 with strategy applied, which
is increased by 15.65%.

The  enhancement  is  mainly  attributed  to  the  integration  of
stochastic  uncertainty  and  dynamic  damping  adjustments  in
the  model.  Thus,  more  precise  control  of  the  wave-induced
kinetic  behavior  is  enabled.  The  results  demonstrate  the
advantage  of  hybrid  integration  of  stochastic  modeling,
adaptive  numerical  solving,  and  robust  control.  Traditional
models often assume stationary or simplified wave dynamics,
leading to over-idealized predictions.  In contrast,  our method
adapts in real time to wave fluctuations, optimizing the trade-
off between power capture and structural fatigue.

In particular, the proposed multi-objective robust-stochastic
optimization strategy plays a central role in this improvement.
It  formulates  energy  output  and  structural  damage  as
competing objectives within a unified cost function, allowing
the  controller  to  dynamically  adjust  key  variables,  such  as

 

25

30

20

Ex
pe

ct
ed

 o
ut

pu
t p

ow
er

 (W
)

15

10

5

0 20 40 60 80 100 120 140 160
Systematic damage

(a) Scenario 1

Pareto front
Best compromise

25

30

20

Ex
pe

ct
ed

 o
ut

pu
t p

ow
er

 (W
)

15

10

5

50 100 150 200 250 300 350
Systematic damage

(b) Scenario 2

Pareto front
Best compromise

40

30

Ex
pe

ct
ed

 o
ut

pu
t p

ow
er

 (W
)

20

10

0 100 200 300

(150.44, 11.74)

(128.18, 10.29)

(64.55, 9.54)

400 500 600 700
Systematic damage

(c) Scenario 3

Pareto front
Best compromise

 
Figure 12 Pareto solution for the multi-objective optimization.
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Figure 13 Relationship between the damper coefficient and the output power.
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Figure 14 Results of optimization.
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damping coefficients and control input in response to evolving
sea states. The stochastic terms embedded in the optimization
framework simulate realistic ocean disturbances, which guide
the  search  toward  control  solutions  that  are  not  only  energy-
efficient  but  also robust  against  transient  shocks.  As a  result,
the  optimization  systematically  drives  the  system  to  operate
near  the  power-efficiency  frontier  while  staying  within  safe
dynamic  limits,  leading  to  the  observed  12.34% increase  in
output  and  15.65% reduction  in  damage.  Therefore,  our
proposed  optimization  strategy  significantly  enhances  the
adaptability and resilience of WEC systems in volatile marine
conditions.  

VI.  Conclusion

This work improves the accuracy of the WEC model in both
the  perspective  of  kinetic  characteristic  and  output  power.
Then,  the  performance of  DOARK improved based on RK-4
is  analyzed.  Moreover,  we  conduct  optimization  for  the
simultaneous  minimization  of  accumulated  damage  and
maximization  of  output  power.  Compared  with  the  previous
works, uncertainty is considered based on the introduction of
stochastic  perturbation  term  and  randomized  interference
term,  which  represents  the  influence  of  unpredictable
conditions  in  the  complex  scenarios.  It  is  worthwhile  to
mention  that  there  is  no  study  to  optimize  the  output  energy
and systematic damage with multi-objective robust-stochastic
strategy. Overall, the model incorporating uncertainty exhibits
smaller  deviations  from the  ground  truth  solutions  compared
to  the  initial  model.  Moreover,  the  utilization  of  DOARK
decreases  the  errors  between  the  calculated  solution  and  the
ground  truth,  which  means  the  improved  method  for  solving
the differential equation is efficient with higher accuracy and
less resources required because of the strategy of adaptive step
size adjustment for the different wave conditions with diverse
complexity,  which  balances  the  accuracy  and  calculation
efficiency.  This  means  the  errors  are  controlled  in  detail  so
that  the  accumulative  error  in  classic  RK method is  avoided.
Furthermore,  cost  functions  are  defined  for  the  simultaneous
optimization of the output power and systematic damage. For
solving  the  problem  of  multi-objective,  multi-objective
robust-stochastic  strategy  is  measured  to  realize  the
optimization.  Based  on  the  simulation  results,  the  climb  of
volatility of working conditions of WEC will make the output
energy  increase  but  the  corresponding  damage  is  also  higher
than  stable  scenarios.  In  scenarios  with  unstable  conditions,
despite  the  output  power  is  limited,  a  more  conventional
strategy  that  controls  the  parameters  to  decrease  the
systematic damage is a reasonable decision for the stability of
WEC.

As  a  direction  for  future  research,  we  intend  to  implement
the  proposed  DOARK-based  robust-stochastic  control
framework  in  field  experiments  under  real  ocean  conditions.
Such  validation  will  help  assess  the  practical  applicability  of
the  model  and  identify  potential  improvements  informed  by
real-world operational data.

Moreover,  the  proposed  method  is  structurally  adaptable
and  exhibits  strong  scalability  across  different  WEC
configurations.  Specifically,  the  dynamic  modeling

framework  is  built  upon  a  modular  representation  of
hydromechanical interactions, which allows the integration of
additional  degrees  of  freedom without  requiring  fundamental
changes  to  the  control  and  numerical  schemes.  The  hybrid
robust-stochastic  control  strategy and the DOARK solver  are
inherently  compatible  with  generalized  motion  equations,  as
long  as  the  system  dynamics  can  be  expressed  in  coupled
ordinary  differential  equation  form.  For  example,  the  model
can be extended to multi-body WEC systems, point absorbers
with  multi-axis  PTO  units,  or  oscillating  water  column
devices  by  updating  the  governing  dynamics  and  associated
damping  models.  In  future  work,  we  will  validate  this
scalability  by  applying  our  method  to  systems  with  varying
structural  topologies  and  PTO  types,  such  as  hydraulic  or
pneumatic  PTOs,  and  assess  how  control  performance  and
computational efficiency evolve with system complexity. This
direction ensures that our approach is not only tailored to the
current  prototype but  also  generalizable  to  a  broader  class  of
WEC architectures.

References 

 J.  E.  Kim  and  T.  Tang, Preventing  early  lock-in  with  technology-
specific policy designs: The renewable portfolio standards and diversity
in  renewable  energy  technologies, Renew.  Sustain.  Energy  Rev., 2020,
123, 109738.

[1]

 S.  Astariz  and  G.  Iglesias, The  economics  of  wave  energy:  A  review,
Renew. Sustain. Energy Rev., 2015, 45, 397–408.

[2]

 B.  G.  Reguero,  I.  J.  Losada,  and  F.  J.  Méndez, A  global  wave  power
resource  and  its  seasonal,  interannual  and  long-term  variability, Appl.
Energy, 2015, 148, 366–380.

[3]

 X. Shi,  B.  Liang,  S.  Li,  J.  Zhao,  J.  Wang,  and Z.  Wang, Wave energy
resource classification system for the China east adjacent seas based on
multivariate clustering, Energy, 2024, 299, 131454.

[4]

 K.  Mahmoodi,  H.  Ghassemi,  and  H.  Nowruzi, Data  mining  models  to
predict ocean wave energy flux in the absence of wave records, Sci.  J.
Marit. Univ. Szczecin, 2017, 49(121), 119–129.

[5]

 T.  Aderinto  and  H.  Li, Conceptual  design  and  simulation  of  a  self-
adjustable  heaving  point  absorber  based  wave  energy  converter,
Energies, 2020, 13(8), 1997.

[6]

 D. Clemente, T. Calheiros-Cabral, P. Rosa-Santos, and F. Taveira-Pinto,
Hydraulic and structural assessment of a rubble-mound breakwater with
a hybrid wave energy converter, J. Mar. Sci. Eng., 2021, 9(9), 922.

[7]

 M. C. Devin, D. T. Gaebele, C. A. M. Ströfer, J. T. Grasberger, J. Lee,
R.  G.  Coe,  and  G.  Bacelli, High-dimensional  control  co-design  of  a
wave  energy  converter  with  a  novel  pitch  resonator  power  takeoff
system, Ocean Eng., 2024, 312, 119124.

[8]

 E. Al Shami, L. Mayberry, R. Zhang, and X. Wang, A preliminary study
of  a  novel  wave  energy  converter  of  a  Scotch  yoke  mechanism-based
power take-off, Sustain. Energy Technol. Assess., 2023, 60, 103533.

[9]

 H.  Gao,  J.  Xiao,  and  R.  Liang, Capture  mechanism  of  a  multi-
dimensional  wave  energy  converter  with  a  strong  coupling  parallel
drive, Appl. Energy, 2024, 361, 122828.

[10]

 Y.  Zhang,  Z.  Huang,  J.  Bian,  J.  Liu,  and  N.  Su, Multi-degree-of-
freedom  decoupled  mechanism  for  improving  energy  harvesting
performance  of  wave  energy  converter, Energy  Convers.  Manage.,
2025, 334, 119850.

[11]

 D. Avila, R. Quiza, and G. N. Marichal, An approach for evaluating the
stochastic  behaviour  of  wave  energy  converters, Appl.  Ocean  Res.,
2022, 129, 103372.

[12]

 142 THE INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 30, NO. 2, JUNE 2025



 M. Adibzade and H.  Akbari,  Spectral  approach to  evaluate  multi-body
floating  wave  energy  converters  in  complex  sea  states, Ocean  Eng.,
2023, 286, 115567.

[13]

 G.  Fan,  W.  Wu,  H.  Zhang,  L.  Cui,  and  F.  Blaabjerg, Evaluation  of
power  generation  capacity  of  wave  energy  converter  with  a
controllable-valve  buoy  based  on  wave-to-grid  modeling  and  control,
Ocean Eng., 2024, 310, 118519.

[14]

 M.  H.  Jahangir,  A.  Houmani,  and  A.  Kargarzadeh, A  theoretical
assessment  of  energy  efficiency  of  wave  tower  as  an  oscillating  wave
surge converter, Ocean Eng., 2024, 295, 116748.

[15]

 C. Quilodrán-Casas, Q. Li, N. Zhang, S. Cheng, S. Yan, Q. Ma, and R.
Arcucci, Exploring  unseen  3D  scenarios  of  physics  variables  using
machine  learning-based  synthetic  data:  An  application  to  wave  energy
converters, Environ. Modell. Soft., 2024, 177, 106051.

[16]

 M.  Adibzade  and  H.  Akbari, Fully  spectral  approach  to  evaluate  the
performance of floating wave energy converters in directional complex
sea states, Ocean Eng., 2024, 306, 117999.

[17]

 H. Mehdipour, E. Amini, S. T. Naeeni, M. Neshat, and A. H. Gandomi,
Optimization  of  power  take-off  system  settings  and  regional  site
selection  procedure  for  a  wave  energy  converter, Energy  Convers.
Manage. X, 2024, 22, 100559.

[18]

 Z. Zhang, Q. Yu, H. Yang, J.  Li,  J.  Cheng, and S. Gao, Triple-layered
chaotic  differential  evolution  algorithm  for  layout  optimization  of
offshore wave energy converters, Expert Syst. Appl., 2024, 239, 122439.

[19]

 M.  Zhang,  S.-R.  Yu,  G.-W.  Zhao,  S.-S.  Dai,  F.  He,  and  Z.-M.  Yuan,
Model predictive control of wave energy converters, Ocean Eng., 2024,
301, 117430.

[20]

 H.  Xu,  Y.  Zhang,  and  P.  Guo, Effect  of  various  motion  modes  on  the
performance  of  a  floating  pneumatic  wave  energy  converter  with  a
backward bent duct, Renew. Sustain. Energy Rev., 2025, 217, 115766.

[21]

 F.  Wang,  Q.  Ma,  Z.  Wang,  and  X.  Ding, Stochastic  conformal
symplectic  exponential  Runge-Kutta-Nyström  integrators  for  solving
damped  second-order  SDEs  with  applications  in  damped  stochastic
nonlinear  wave  equations, Commun.  Nonlinear  Sci.  Numer.  Simul.,
2025, 148, 108874.

[22]

 Y.  Liu,  N.  Mizutani,  Y.-H.  Cho,  and  T.  Nakamura,  Nonlinear
hydrodynamic  analysis  and  optimization  of  oscillating  wave  surge
converters under irregular waves, Ocean Eng., 2022, 250, 110888.

[23]

 H. Mirzaei, M. N. Moghim, and B. Movahedian, Numerical solution of
hydrodynamic  efficiency  equations  for  an  oscillating  water  column
wave energy converter using the method of fundamental solutions, Eng.
Anal. Bound. Elem., 2024, 158, 270–288.

[24]

 X.-J.  He,  J.-S.  Li,  X.-Y.  Huang,  and  Y.-J.  Zhou,  Solving  elastic  wave
equations  in  2D  transversely  isotropic  media  by  a  weighted  Runge-
Kutta discontinuous Galerkin method, Pet. Sci., 2023, 20(2), 827–839.

[25]

 W. Chen, Z. Huang, Y. Zhang, L. Wang, and L. Huang, Hydrodynamic
performance  of  a  three-unit  heave  wave  energy  converter  array  under
different arrangement, Renew. Energy, 2024, 221, 119808.

[26]

 M.  K.  Hoffmann,  G.  Moretti,  G.  Rizzello,  and  K.  Flaßkamp, Multi-
objective  optimal  control  for  energy  extraction  and  lifetime
maximisation  in  dielectric  elastomer  wave  energy  converters, IFAC-
PapersOnLine, 2022, 55(20), 546–551.

[27]

 F. Carapellese, E. Pasta, N. Faedo, and G. Giorgi, Dynamic analysis and
performance  assessment  of  the  inertial  sea  wave  energy  converter
(ISWEC)  device  via  harmonic  balance, IFAC-PapersOnLine, 2022,
55(31), 439–444.

[28]

 Y. Cheng, W. Du, S. Dai, C. Ji, M. Collu, M. Cocard, L. Cui, Z. Yuan,
and  A.  Incecik, Hydrodynamic  characteristics  of  a  hybrid  oscillating
water column-oscillating buoy wave energy converter  integrated into a
π-type  floating  breakwater, Renew.  Sustain.  Energy  Rev., 2022, 161,
112299.

[29]

 A.  Shadmani,  M.  Reza  Nikoo,  T.  Etri,  and  A.  H.  Gandomi, A  multi-
objective approach for location and layout optimization of wave energy
converters, Appl. Energy, 2023, 347, 121397.

[30]

 Y.  Cheng,  F.  Song,  C.  Xi,  M.  Collu,  Z.  Yuan,  and  A.  Incecik,
Feasibility  of  integrating  a  very  large  floating  structure  with  multiple
wave  energy  converters  combining  oscillating  water  columns  and
oscillating flaps, Energy, 2023, 274, 127301.

[31]

 H. Gu, P. Stansby, Z. Zhang, G. Zhu, P. Lin, and H. Shi, Research and
concept  design  of  wave  energy  converter  on  ocean  squid  jigging  ship,
Energy, 2023, 285, 129406.

[32]

 A. Rahimi, S. Rezaei, S. Mansourzadeh, and J. Parvizian, Dimensional
optimization  of  a  two-body  wave  energy  converter  under  irregular
waves for the strait of Hormuz, Ocean Eng., 2024, 292, 116539.

[33]

 A. Vakili, A. Pourzangbar, M. M. Ettefagh, and M. Abdollahi Haghghi,
Optimal  control  strategy  for  enhancing  energy  efficiency  of  Pelamis
wave energy converter: A simulink-based simulation approach, Renew.
Energy Focus, 2025, 53, 100685.

[34]

 Q. Wei, T. Li, J. Zhang, and F.-Y. Wang, Primal-dual adaptive dynamic
programming  for  finite-horizon  optimal  control  of  nonlinear  systems
with isoperimetric constraints, Automatica, 2025, 173, 112029.

[35]

 Y.  Chen,  L.  Agostini,  G.  Moretti,  G.  Berselli,  M.  Fontana,  and  R.
Vertechy,  Fatigue  life  performances  of  silicone  elastomer  membranes
for  dielectric  elastomer  transducers:  Preliminary  results,  in Proc.  of
SPIE  10966,  Electroactive  Polymer  Actuators  and  Devices  (EAPAD)
XXI, Denver, CO, USA, 2019, 1096616.

[36]

 J. Lu, Q. Wei, and F.-Y. Wang, Parallel control for nonzero-sum games
with  completely  unknown  nonlinear  dynamics  via  reinforcement
learning, IEEE Trans. Syst. Man Cybern. Syst., 2025, 55(4), 2884–2896.

[37]

 E. Giglio, E. Petracca, B. Paduano, C. Moscoloni, G. Giorgi, and S. A.
Sirigu, Estimating the cost of wave energy converters at an early design
stage: A bottom-up approach, Sustainability, 2023, 15(8), 6756.

[38]

 Y.-P. Xu, R.-H. Liu, L.-Y. Tang, H. Wu, and C. She, Risk-averse multi-
objective  optimization  of  multi-energy  microgrids  integrated  with
power-to-hydrogen technology, electric vehicles and data center under a
hybrid  robust-stochastic  technique, Sustain.  Cities  Soc.,  2022,  79,
103699.

[39]

 A. Babarit, A database of capture width ratio of wave energy converters,
Renew. Energy, 2015, 80, 610–628.

[40]

 J. Náprstek, Combined analytical and numerical approaches in dynamic
stability  analyses  of  engineering  systems, J.  Sound.  Vib., 2015, 338,
2–41.

[41]

Runhao  Liu received  the  BS  degree  from  Inner
Mongolia  University  of  Science  &  Technology,
Baotou, China, in 2024. He is currently pursuing the
MS degree at Zhejiang University, Hangzhou, China.
His  research  interests  include  intelligent  control,
optimization,  mathematical  modeling,  and
computational mathematic. He is the author of nearly
10  papers  to  date,  and  one  of  these  has  been
recognized as an ESI highly cited paper. He has also
published  several  patents,  demonstrating  notable

academic achievements.

Ziming  Chen received  the  BS  degree  from  Inner
Mongolia  University  of  Science  &  Technology,
Baotou, China, in 2024. He is currently pursuing the
MS degree  at  East  China  University  of  Science  and
Technology,  Shanghai,  China.  His  research  interests
include  information  and  computational  science.  He
has  published  several  papers  patents,  which  proves
his academic ability.

LIU AND CHEN: MULTI-OBJECTIVE OPTIMIZATION FOR WAVE ENERGY CONVERTER BASED ON ROBUST-STOCHASTIC CONTROL ... 143 


	I Introduction
	II Problem Formulation
	III Modeling
	A System Modeling
	B Cost Function

	IV Methodology
	A Runge-Kutta Method
	B Adaptive Step Size Search
	C Multi-Objective Optimization

	V Experiment
	A Comparison Analysis of the Optimized Model
	B Performance Analysis of DOARK
	C Result of Optimization

	VI Conclusion
	References

