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   Abstract—The  field  of  artificial  intelligence  generated  content
(AIGC)  is  currently  experiencing  rapid  development,  attracting
the  attention of  both academic  and industrial  communities.  This
article  summarizes  the  development  of  several  mainstream
models  in  the  AIGC  field,  as  well  as  their  research  and
application  status  in  areas  such  as  image  generation  and  text
generation.  Additionally,  as  an  emerging  form  of  internet
technology,  this  article  analyzes  the  research  status  and
application  prospects  of  AIGC  in  traditional  industrial  fields
using  the  power  system  as  an  example.  Finally,  this  article
summarizes  in  detail  the  shortcomings  of  generative  models  and
identifies  research  directions  for  future  study,  to  promote  the
development  of  AIGC  technology  and  its  deep  integration  with
traditional  industrial  applications,  to  facilitate  industrial
technological transformation and upgrading.
    Index Terms—Artificial  intelligence  generated  content  (AIGC),
diffusion  model, generative  adversarial  network, variational  auto-
encoder, power  system, steady-state  security  analysis, transient
stability assessment
  

I.  Introduction

A RTIFICIAL  intelligence  generated  content  (AIGC)
refers  to  content  that  is  created  through  AI
algorithms, such as image, text, audio, video, etc.

Early  AIGC  was  content  generated  by  professionals  using
software  tools  and  fixed  templates.  It  was  mainly  applied  in
industrial  modeling,  film  creation,  etc.  However,  the
application  scenarios  were  limited,  and  the  degree  of
automation and efficiency was relatively low. In recent years,
AIGC  applications  have  also  gained  rapid  growth  in  various
scenarios with the development of AI algorithms and internet
technology.  The  generative  adversarial  network  (GAN)
proposed  by  Goodfellow  et  al. [1] has  greatly  propelled  the
application of deep learning technology in AIGC technology.
GAN employs a generator and a discriminator for adversarial

training,  which  enables  the  two  networks  to  engage  in  an
antagonistic  game  and  constantly  iterate  to  improve  the
quality  of  the  generated  data  samples.  Ideally,  the  generator
can generate new data that follow the same distribution as the
real data. However, it is difficult to guarantee the stability and
convergence  of  the  GAN  training  process.  Given  the
shortcomings of the original GAN, subsequent models such as
conditional  GAN  (cGAN) [2] and  information  maximizing
generative  adversarial  network  (InfoGAN) [3] were
developed,  resulting  in  significant  improvements  in  model
performance.  As  a  result,  GAN-based  models  have  become
the  mainstream  generative  models.  In  addition,  generative
models  also  include  variational  auto-encoders  (VAEs) [4],
flow-based models [5], and their derived models, also pushing
the  development  of  AIGC  field  to  a  certain  extent.  Over  the
past  two  years,  the  launch  of  various  AI  painting  products,
including  OpenAI’s  DALL·E2,  Google’s  Imagen,  and
Microsoft’s  NUWA,  has  garnered  significant  attention  from
the  public.  These  tools  can  automatically  generate  high-
quality  images  based  on  text  and  other  input  data.  The
products  mentioned  above  are  achieved  based  on  diffusion
model  (DM).  DM  was  originated  from  denoising  diffusion
probabilistic model (DDPM) proposed in 2020 [6]. Reference
[7] pointed out that DDPM defeated GAN in image synthesis.
The  various  improved  diffusion  models  that  have  been
subsequently introduced, especially the stable diffusion model
[8], have received widespread attention and discussion.

Nowadays, the field of AIGC is booming. On the one hand,
the automated production of art pieces and industrial products
brings convenience to people’s lives. With the help of AIGC,
people’s  efficiency  in  living  and  working  has  been
significantly  improved.  On  the  other  hand,  as  an  emerging
form  of  internet  technology,  it  is  imperative  for  AIGC  to
leverage  its  advantages  in  data  augmentation,  enhance
information support in industrial management and control, and
drive the digital and intelligent development of relevant fields.
This will guide profound technological changes. Based on the
analysis  provided  above,  this  paper  focuses  on  AIGC-related
algorithms and their applications in power system security and
stability  analysis,  while  also  examining  some  current  issues
that exist within these areas.

The  rest  of  this  paper  is  organized  as  follows.  Section  I
briefly  introduces  the  basic  principles  of  several  main  AIGC
models, and summarizes the status of their typical applications
in  the  field.  Section  II  introduces  the  fundamental  physical
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models  of  power  system  security  and  stability  analysis,  and
condenses  the  framework  of  data-driven  power  security  and
stability analysis. Section III overviews the research status of
VAE  and  GAN  models  in  power  security  and  stability
analysis.  Section  IV  analyzes  existing  problems  in  current
research  and prospects  for  future  research  directions.  Section
V summarizes the whole paper.  

II.  Overview of Artificial Intelligence Generative
Model (AIGM) Development

  

A.  Introduction of AIGM
Artificial  intelligence  generative  model  refers  to  a  kind  of

model that can randomly generate observed results according
to  some  implicit  parameters,  mainly  including  VAE [4, 9],
GAN [1, 10–12], DM [6, 7, 13, 14], etc. This section provides
a  brief  introduction  to  these  models  and  describes  their  key
principles and technical characteristics.

VAE. VAE  is  a  generative  model  that  is  based  on  the
modification  of  the  auto-encoder.  After  the  model  training  is
completed, the decoder can be used to simulate the generation
of  data  that  are  similar  in  probability  distribution  to  the
training data.

As  shown  in Fig.  1,  VAE  is  composed  of  encoders  and
decoders [4, 15], the same as auto-encoders.
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Figure 1 VAE.
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Encoder,  as a discriminative model ,  encodes input
data  and  generates  the  hidden  variable ,  corresponding  to
input  data;  while  decoder,  as  a  generative  model ,
receives hidden variable  as input and decodes it to get data

.  and  are  parameters  (e.g.,  neural  network  weight  and
bias) of encoder model and decoder model, respectively.

qφ(z | x) pθ(x | z)

In  VAE,  Kullback-Leibler  (KL)  divergence  is  used  to
measure  the  similarity  between  the  discriminative  model

 and  the  true  posterior  probability ,  i.e.,  the
loss function of VAE is
 

L(θ,φ, x) = KL{qφ(z | x), pθ(z | x)}−
Eqφ(z|x)

{
log

[
pθ(x | z)

]} (1)

KL{qφ(z | x), pθ(z | x)}
z

Eqφ(z|x)
{
log

[
pθ(x | z)

]}where  refers  to  the  similarity  between
the  probability  distribution  of  hidden  variable  and  prior
distribution,  and  refers  to  the  error
between reconstructed samples and original samples.

During  the  process  of  model  training,  the  objective  is  to
minimize  the  reconstruction  error  between  the  reconstructed
samples  and the  original  samples.  Additionally,  the  aim is  to
make  the  probability  distribution  of  the  hidden  variable
approach the prior distribution as closely as possible.

Based on VAE, many scholars have made improvements for

various  application  scenarios,  such  as  Nouveau-VAE [16],
Control-VAE [17], and Robust-VAE [18]. But in theory, VAE
needs  to  use  variational  inference  for  approximation,  which
introduces  bias  and  therefore  makes  the  generated  images
blurry.

Dreal
xreal ∼ Dreal

xreal
Dreal Φ

GAN. GAN  refers  to  a  kind  of  deep  learning  model.  As
shown in Fig.  2,  it  is  mainly  composed  of  two  parts [1],  the
generative  model  and  discriminative  model,  separately
corresponding  to  the  generator  and  discriminator. 
denotes  the  probability  distribution  of  real  data. 
means  that  is  sampled  from  the  real  data  distribution

.  represents the parameter of the discriminator model.
  

z ~ N(0, I) xreal ~ Dreal

xgenerative = G(z, θ) D(xgenerative, Φ) =
D(G(z, θ), Φ)

Generative
network

Discriminant
network

G(z, θ)

D(x, Φ)

D(xreal, Φ)
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Figure 2 GAN.
 

(1)  Generator It  is  used  to  generate  data.  The  generator
samples randomly from hidden space as input, and the output
data need to imitate real samples as much as possible.

(2)  Discriminator It  is  used to  check whether  the  data  are
fake  samples  generated  by  the  generator.  The  input  of  the
discriminator  is  the  real  sample  or  output  of  the  generator  to
distinguish  the  output  of  the  generator  from  real  samples  as
much as possible.

G z ∼ N(0, I)
G(z, θ)

For  the  generator ,  its  input  is ,  its  output  is
.

D

Xgenerative =G(z, θ) Xreal
X = Xgenerative ∪Xreal

D (xreal,ϕ) D(xgenerative,ϕ) = D(G
(z, θ),ϕ) ϕ

D

For  the  discriminator ,  it  can  be  deemed  as  a  binary
classification.  One  is  the  input  of  the  generator,  i.e.,

;  the  other  is  the  real  data .  By
inputting the data  into the discriminator,
the  output  results  are  and 

,  respectively.  represents  the  parameter  of
discriminator model .

From  the  perspectives  of  the  generator  and  discriminator,
we have standards as follows:

D(xgenerative,ϕ) = D(G(z, θ),ϕ)

(1)  Standard  for  generator The  closer  the  generated  data
to  the  real  data,  the  better,  that  is,  the  closer

 to  1,  the  better.  Thus,  the
parameter for the generator meets
 

max
θ

(
Ez∼P(z)[log D(G(z, θ),ϕ)]

)
(2)

Pwhere  indicates probability.

D (xreal,ϕ) D(xgenerative,ϕ) = D(G
(z, θ),ϕ)

(2) Standard of discriminator Network can distinguish the
real  and  false  data  accurately,  that  is,  the  closer  the  output

 to  1,  the  closer  the  output 
 of generated data to 0.

x p(x)
y

For the discriminator, the cross entropy loss function can be
used.  For the binary classification,  there are positive samples
(label = 1) and negative samples (label = 0) only. The sum of
the probabilities is 1. For the input , it will be output as .
We set  as the real label,  and the loss function of the single
sample is
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L =− y · log(p(x))+ (1− y) log(1− p(x)) (3)
NCalculate the average loss function of  samples as

 

L =
1
N

N∑
i=1

yi · log(p (xi))+ (1− yi) log(1− p (xi)) (4)

xi yi iwhere  and  represent the -th input and output vectors of
the model.

D(x,ϕ) x ∼ Pdata(x) Pdata(x)As the output  of  is real, where 
represents  the  probability  distribution  of  the  dataset,  i.e.,  the
label is 1, the loss function is
 

L =−1 · log(D(x,ϕ))+ (1−1) log(1−D(x,ϕ)) =
− log(D(x,ϕ))

(5)

The average loss function is
 

L = −Ex∼Pdata (x)[log(D(x,ϕ))] (6)
D(G(z, θ),ϕ) z ∼ P(z)As the output  of  is false, i.e., the label

is 0, the loss function is
 

L = − log(D(x,ϕ)) (7)
The average loss function is

 

L = −Ez∼Pdata (z)[log(1−D(G(z, θ),ϕ))] (8)
To sum up, the loss function of GAN is

 

L(D,G) = Ex∼Pdata (x)[log(D(x,ϕ))]+
Ez∼Pz(z)[log(1−D(G(z),ϕ))]

(9)

The optimization objective of GAN is
 

min
G

max
D

L(D,G) (10)
G DDuring the training process,  is fixed and  is trained first

 

max
D

(Ex∼Pdata (x)[log(D(x,ϕ))]+

Ez∼Pz(z)[log(1−D(G(z),ϕ))])
(11)

D

D
G

L D

where the objective of training  is to make the value of Eq.
(11)  as  high  as  possible.  The  real  data  are  expected  to  be
classified into 1 by ,  while the generated data are expected
to be classified into 0. The objective of training  is to make
the  value  of  as  small  as  possible,  so  that  cannot
distinguish real and false data.

Compared  with  VAE,  GAN focuses  primarily  on  restoring
the  distribution  of  the  real  data  and  generating  new  data
through  sampling.  However,  the  original  GAN  suffers  from
several  limitations,  including  divergent  training,  poor
robustness,  high sensitivity to the design of  the discriminator
and  generator  structures,  and  the  selection  of  hyper-
parameters.  In  view  of  these,  some  GAN-based  derived
models [10, 17–22] have  been  successively  put  forward,  and
good  results  have  been  achieved  in  different  application
scenarios, which have overcome the shortcomings of original
GAN to a certain extent.

DM. DM is  an  emerging  generative  model  in  the  past  two
years,  which  has  achieved  remarkable  results  in  text
generation, image generation, and other fields [6, 7, 13, 14].

The  principle  of  DM  is  to  apply  noise  gradually  to  the
original  data  until  the  data  are  destroyed into  complete  noise

q
pθ x0

x0 xT xT
T

t
xt q (xt | xt−1)

t→∞ xT ∼ N(0, I) pθ
θ

and  then  restore  from  the  noise  to  the  original  data  through
backward  learning.  Specifically,  DM can  be  divided  into  the
forward diffusion model  and the backward generative model

. Taking DDPM for example, as shown in Fig. 3,  is the
original data, and there is a Markov chain from  to . 
represents the noisy data at the -th time step. For every time
step ,  in  the  forward  direction,  DM  gradually  adds  noise  to
the  data  to  get  the  posterior  probability .  When

, . In the generative model , the network
with the parameter  is used to restore the noise into effective
information.
  

p(x0|x1)

x0 ··· ···

p(xt−1|xt)

xt−1 xt

p(xt|xt+1)

xt+1

p(xT−1|xT)

xT

q(x1|x0) q(xt|xt−1) q(xt+1|xt) q(xT|xT−1)
 
Figure 3 DM.
 

x0
βt

βt xt−1

t−1 q (xt | xt−1) = N(xt,
√

1−βt xt−1,βtI)

The  forward  process  is  also  called  the  diffusion  process,
which  is  a  Markov  process,  that  is,  the  current  state  is  only
related  to  the  previous  state.  We  gradually  add  the  Gaussian
noise  to  the  original  data .  The  standard  deviation  of  the
noise  is  determined  by  a  fixed  value .  The  mean  value  is
determined by the fixed value  and the data  at the step

, i.e., .

x0
xT

xt
xt−1 pθ (xt−1 | xt)

x̄0
x0

The  backward  process  is  also  called  the  inverse  diffusion
process.  It  is  expected  to  predict  the  target  distribution 
gradually  from  the  noise  distribution .  The  backward
process is also a Markov process. The input  is used to get
the distribution of , namely to get , and finally
to  get  the  generated  data ,  which  are  expected  to  be
consistent in distribution with .

pθ (x0) q(x0)
The  objective  of  DM  is  to  make  the  approximate

distribution  approach the real data distribution  as
much  as  possible.  Therefore,  the  objective  function  of  the
model is expressed by the cross entropy as
 

L = −Eq(x0) log pθ (x0) =

−Eq(x0) log
[w

pθ (x0:T )dx1:T

]
=

−Eq(x0) log
[w

q (x1:T | x0)
pθ (x0:T )

q (x1:T | x0)
dx1:T

]
=

−Eq(x0) log
[
Eq(x1:T |x0)

pθ (x0:T )
q (x1:T | x0)

]
⩽

−Eq(x0:T ) log
(

pθ (x0:T )
q (x1:T | x0)

)
(12)

x0:T
T

where  is  the  sequence  of  variables  from the  initial  time
step to time step .

Then, we have
 

L = −Eq(x0) log pθ (x0) ⩽

Eq(x0:T ) log
(

q (x1:T | x0)
pθ (x0:T )

) (13)
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LLB

The  right  term  of  Eq.  (13)  is  the  lower  bound  of  log-
likelihood,  which  is  denoted  as .  As  long  as  we  make  it
smaller, the cross entropy will be smaller.

As the model meets the condition of the Markov chain, we
can get
 

q (x1:T | x0) =
T∏

t=1

q (xt | xt−1) ,

pθ (x0:T ) = pθ (xT )
T∏

t=1

pθ (xt−1 | xt)

(14)

LLBBy substituting Eq. (14) into , we can obtain
 

LLB = Eq(x0:T ) log
(

q (x1:T | x0)
pθ (x0:T )

)
=

Eq


log

T∏
t=1

q (xt | xt−1)

pθ (xT )
T∏

t=1

pθ (xt−1 | xt)


=

Eq

− log pθ (xT )+
T∑

t=1

log
(

q (xt | xt−1)
pθ (xt−1 | xt)

) =
Eq

[
log

q (xT | x0)
pθ (xT )

+

T∑
t=2

q (xt−1 | xt, x0)
pθ (xt−1 | xt)

−

log pθ (x0 | x1)
]
=

Eq(x0)DKL
[
q (xT | x0)∥pθ (xT )

]
+

Eq(x0,xt)

T∑
t=2

DKL
[
q (xt−1∥x0, xt)∥pθ (xt−1 | xt)

]−
Eq(x0,x1) log pθ (x0 | x1)

(15)

DKL LLBwhere indicates  KL  divergence.  Then,  is  expressed
by KL divergence as
 

LLB = Eq(x0)DKL
[
q (xT | x0)∥pθ (xT )

]
+

Eq(x0,xt)

T∑
t=2

DKL
[
q (xt−1∥x0, xt)∥pθ (xt−1 | xt)

]−
Eq(x0,x1) log pθ (x0 | x1)

(16)

DKL(qϕ(z | x)∥pθ(z))
Eqϕ(z|x)

[
log pθ(x | z)

]
p q x0

In Eq.  (16),  the first  term corresponds to the regularization
loss  in  VAE,  the  third  term  corresponds
to the reconstructed loss , and the second
term refers to the sum of multiple KL divergences, which are
used to separately measure the distance between the posterior
distribution  and  the  posterior  distribution  where  is
known.

t = 1
x0

xt
pθ (xt−1 | xt) = N(xt−1,µθ (xt, t) ,σ2

t I)

For  optimizing  Eq.  (16),  the  first  term is  constant,  and  the
third  term  can  be  deemed  as  the  result  when  the  first  term

. Therefore, the second term is mainly taken into account.
The  reparameterization  method  is  used  to  make  directly
calculate  at any step without iteration step by step [23]. By
setting ,  according to  Ref.
[23], we have

 

Lt−1 = Eq(x0,xt)

T∑
t=2

DKL
[
q (xt−1∥x0, xt)∥pθ (xt−1 | xt)

]
=

Eq

[
1

2σ2
t
∥µ̃t (xt, x0)−µθ (xt, t)∥2

]
+C

(17)

µθ
θ σ2

t
t

Lt−1
t−1 µ̃t(xt, x0)

xt−1 xt x0
C

where  denotes  the  mean  function  predicted  by  the  neural
network  parameterized  by .  denotes  the  variance
parameter used in the Gaussian transition at time , specifying
the  noise  level.  denotes  the  loss  term  corresponding  to
step  in  the  optimization  objective.  is  the
posterior  mean  of  given  and ,  computed  from  the
forward process.  denotes a constant irrelative to the model.

µθ
µ̃t

In order to minimize Eq. (17), it is necessary to optimize ,
making it  approach  as much as possible.  In Ref. [15],  Eq.
(17)  is  further  simplified  in  practice,  which  is  detailed  in
Ref. [6].

At  present,  DM  has  achieved  remarkable  results  in  image
generation, text generation [6, 23], and other fields. However,
DM  suffers  from  several  inherent  issues,  including  long
sampling  time,  challenges  in  reducing  data  dimensionality,
and  limited  capacity  to  handle  only  a  single  data  type.  As  a
result,  there  is  an  urgent  need  for  a  new  model  that  can
overcome  these  shortcomings  and  enhance  overall
performance.

f (x)

Gw(x,z)
w

Other  generative  models  such  as  normalized  flow  models
and  energy-based  models  are  shown  in Fig.  4 [24]. 
denotes  the  transformation  function  (or  mapping)  performed
by the encoder in a normalizing flow model.  denotes
the generator function parameterized by . Due to the limited
space, it will not be described here, and reference can be seen
in Refs. [25, 26].
  

x Encoder
f (x)

(a) Normalized flow

(b) Energy-based model

Decoder
f −1(x)

x−z

x
Generator
Gw(x, z)

Discriminator
C(y, y) Probabilityy

y
−

y−
−

z

 
Figure 4 Other generative models.
   

B.  Application of AIGM in Typical Field
  

a.  Image Generation
Image  generation  is  an  important  application  direction  of

AIGM.  The  main  task  of  image  generation  is  to  generate
images  that  meet  human  needs.  Generally  speaking,  image
generation mainly includes two fields, text-to-image (T2I) and
image-to-image.

Text-to-image refers to generating an image based on a text
description, which has always been a research hot topic in the
field of AI. The first step is to extract semantic features from
the  text  description,  which  are  then  input  into  the  image
generation  model.  The  model  needs  to  be  able  to  accurately
extract the key semantics in the text description, and make the
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image meet the description of the extracted semantic features
while ensuring that the image is as real as possible during its
generation [27].  The  method  of  generative  adversarial  T2I
[28] first puts forward the use of GAN for text-to-image. The
method  incorporates  random  variables  into  adversarial
networks and employs a deep convolutional GAN generator to
produce  images.  As  a  result,  it  can  generate  multiple  images
that  correspond to  the  same text  description.  After  that,  a  lot
of research has achieved text-to-image based on GAN and its
variants.  StackGAN [29] decomposes the generation of high-
resolution  images  into  subproblems  that  are  easier  to  solve,
which  improves  the  quality  of  the  generated  images.  The
method  StackGAN++ [30] sets  a  bilayer  structure  based  on
StackGAN. Layer 1 generates the original scenario shape and
color according to the text description, while layer 2 generates
higher-resolution  images  according  to  the  results  and  text
description of layer 1.

AttnGAN [31] introduces  the  attention  mechanism  into
GAN.  With  the  help  of  the  attention-driven  mechanism,  the
network can be used to evaluate keywords in text descriptions
and  synthesize  details  in  different  sub-domains  of  images.
Considering that initial images generated by the network may
have  quality  issues,  dynamic  memory  generative  adversarial
network  (DMGAN) [32] adopts  the “dynamic  memory”
mechanism.  In  case  of  poor  quality  of  initial  images,  the
dynamic storage module can be used to refine image content.
ControlGAN [33] puts  forward  the  use  of  the  word
discriminator, allowing the model to focus on generating sub-
domains corresponding to the most relevant words.

All in all, the above GAN-based improved methods enhance
the  performance  of  text-to-image  conversion  from  different
angles.  However,  due  to  the  limited  expressive  ability  of
GAN,  these  methods  are  usually  used  to  generate  scenarios
with  a  limited  dataset  only,  where  the  application  scope  is
narrow.

Apart  from  GAN,  other  AI  generative  models  have  also
found applications in text-to-image. CogView [34] uses vector
quantized  (VQ)-VAE  model  to  establish  tokenizer,  and  uses
transformer  that  contains  4  billion  parameters  for  image
generation.  The  VAE-GAN [35] uses  VAE  model  to  extract
the  basic  layout  and  color  of  text-based  images  and  uses
conditional GAN to improve the generated result of VAE and
restore  missing  details,  to  generate  vivid  images.  DALL·E
[36] model is used to achieve image generation in unrestricted
scenarios based on the auto-regression model. In addition, DM
[6, 7] has  been  increasingly  studied  in  recent  years  and  has
also achieved excellent results in text-to-image.

The  primary  task  of  image-to-image  is  to  convert  existing
images  into  other  images  as  required,  such  as  image
restoration,  portrait  extraction,  image  style  transfer,  etc.
Pix2Pix [37] is the most classic one in this field. Pix2Pix adds
regularization,  U-net,  and  other  structures  based  on
conditional  GAN  to  achieve  a  universal  image  conversion
framework  and  image  style  transfer.  CycleGAN [38]
introduces  the  concept  of  loop  consistency,  where  two  GAN
networks  are  arranged  in  mirror  symmetry  to  form  a  loop
network.  Additionally,  it  designs  a  loss  function  to  enforce
loop  consistency,  which  helps  to  avoid  potential  mode

collapse  during  image  conversion  using  GAN  networks.
DualGAN [39] uses  the  GAN  of  dual  learning  mode  to
achieve one-to-one image translation. Unsupervised image-to-
image  translation  network  (UNIT) [40] uses  VAE-GAN  to
model  every  image  domain  based  on  the  shared-latent  space
hypothesis,  which  achieves  unsupervised  image-to-image
translation.  The  above  methods  are  one-to-one  image-to-
image, but there are also tasks requiring the conversion of one
image  to  multiple  images.  Multimodal  UNIT  (MUNIT) [41]
divides  images  into  content  encoding  and  space  encoding,
retains  content  decoding  of  images,  and  samples  different
style  encodings  of  images  to  generate  a  multimodal  output
sample.  BiCycleGAN [42] combines  conditional  variational
auto-encoder  (cVAE)-GAN  and  conditional  latent  regressor
(cLR)-GAN  models  and  samples  different  noise  signals  in
source space to achieve one-to-many image generation.  

b.  Natural Language Generation
Natural  language  generation  is  an  important  branch  of

natural  language  processing  (NLP).  The  aim  of  natural
language  generation  is  to  automatically  produce
understandable  texts  based  on  key  information,  including
abstract  summary,  article  writing,  dialogue  system,  etc.  In
recent  years,  many  scholars  have  attempted  to  apply  AI
generative models to the field of natural language generation.

VAE  has  a  wide  range  of  applications  in  natural  language
generation.  VAE-recurrent  neural  network  (RNN) [43]
proposes a kind of RNN-based VAE generative model, which
uses  the  sequential  structure  characteristics  of  RNN  for  text
generation  modeling.  Conditional  VAE [44] captures
discourse-level diversity in encoders based on its  framework,
which  achieves  diversified  dialog  generation.  The
transformer-based  conditioned  variational  auto-encoder [45]
uses  transformers  to  replace  the  encoders  and  decoders  in
VAE.  The  encoder  and  decoder  share  the  attention  layer,
enabling  the  model  to  generate  text  for  story  continuation
tasks.  Apo-VAE [46] adopts the original  dual  formula of KL
divergence  and  introduces  an  adversarial  learning  mode,
which  enhances  the  stability  of  text  generation  training.
Topic-guided  variational  auto-encoder  (TGVAE) [47] builds
upon  the  VAE  framework  and  incorporates  a  topic  guide  to
improve  its  performance.  It  also  introduces  the  use  of  the
Householder  manifold  to  enhance  posterior  reasoning,
resulting  in  promising  outcomes  for  both  unconditional  and
conditional text generation tasks. Polarized-VAE [48] is used
to  explain  sentence  semantics  or  grammar  based  on  the
proximity  measurement  reflecting  similarity  between  data
points.

GAN models are originally designed to generate continuous
data.  But  NLP  requires  generating  the  sequence  of  discrete
words. Moreover, GAN can be used to evaluate the generated
complete  sequence  only,  which  lacks  the  function  of
evaluating  partial  sequence.  To  solve  these  problems,
SeqGAN [49] casts  the  generator  within  a  GAN  as  a
randomized  policy  in  reinforcement  learning.  This  approach
directly  updates  the  gradient  and  circumvents  the  differential
problem associated with the generator. The reward signal used
in  reinforcement  learning  is  derived  from  the  evaluation  of
complete  sequences  by  discriminator.  LeakGAN [50] is  a
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model  designed  for  long-text  generation.  It  achieves  this  by
using a hierarchical generator, which allows the discriminator
to provide the generator with more information. This approach
helps  to  overcome  the  issue  of  sparse  information  in  the
discriminator,  as  the  additional  guidance  provided  to  the
generator  results  in  more  accurate  and  effective  long-text
generation. In addition, there are also methods that use policy
gradient for GAN training and achieve the GAN-based dialog
system  in  combination  with  the  training  method  of  teacher
forcing [51].

Other  methods  have  also  been used  in  various  subfields  of
natural  language  generation.  Structured  denoising  diffusion
model in discrete state-space (D3PM) [52] adds the Gaussian
noise  to  discrete  variables  and  improves  the  loss  function  of
DM,  enabling  it  to  be  applied  to  discrete  variables,  which
allows  DM  to  be  used  for  text  generation.  In  regards  to  the
image-to-text  problem,  dual  encoder  (DualEnc) [53]
establishes a dual coding model that incorporates not only the
structure  of  the  image  but  also  the  linear  structure  of  the
output text.  

c.  Other Fields
Besides  image  generation  and  natural  language  generation,

AIGM finds extensive applications in various other domains.
In the audio generation field, MIDI-VAE [54] can deal with

chord music with multi-instrument tracks based on VAE, and
simulate  music  dynamics  in  combination  with  note  duration
and speed, so as to achieve music style transfer. MidiNet [55]
uses GAN for rhythm generation. Similarly, MuseGAN [56] is
also  a  GAN-based  model,  but  it  incorporates  a  sequence
generative model to generate music with multiple tracks in the
symbolic  domain.  Its  aim  is  to  capture  the  harmonic  rhythm
structure,  the  association  between  audio  tracks,  and  the
temporal  structure  of  music.  When  it  comes  to  code
generation,  GANcoder [57] proposes  an  automatic
programming  method  based  on  GAN  that  can  generate
functional  and  logical  programming  language  code  from  the
given  natural  language  discourse.  The  model  is  capable  of
producing code that is equivalent to the meaning of the input
discourse.  In  terms  of  three-dimensional  (3D)  model
generation,  there  are  a  lot  of  researches  focused  on  using
GAN for generation or reconstruction [58, 59]. Also, there are
researchers  who use  cGAN [60] to  achieve the  generation of
3D  medical  images,  or  use  the  VAE [61] model  to  directly
generate 3D coordinates of immune globulin.  

III.  Power System Security and Stability Analysis

This section introduces the problems of steady-state security
and  transient  stability  in  power  systems  and  summarizes  the
framework of data-driven power system security and stability
analysis.  

A.  Steady-State Security Analysis

N
i P, Q, V, and θ

The  power  system  flow  equation  is  fundamental  to  static
security analysis [62]. In a power system with  nodes, each
node  has four state variables , representing the
active  power  injection,  reactive  power  injection,  voltage
magnitude,  and  phase  angle,  respectively.  The  state  between
nodes meets the flow equation [63]

 
∆Pi = Psp

i −Vi

N∑
j=1

V j(Gi j cosθi j+Bi j sinθi j) = 0,

∆Qi = Qsp
i +Vi

N∑
j=1

V j(Bi j cosθi j−Gi j sinθi j) = 0

(18)

i = 1,2, ...,N Gi j Bi j
i j θi j

i j

where , sp indicates setpoint,  and  are the
admittance values between node  and node , and  refers to
the phase angle difference between node  and node .

PV PQ
Vθ

In  the  actual  solving  process,  there  are  usually  two  known
state variables under each node for solving the other two state
variables.  Nodes  can  usually  be  divided  into  nodes, 
nodes,  and  nodes by different  known state variables.  The
flow  equation  is  usually  used  for  solving  based  on  iteration
methods,  including  the  Newton-Raphson  method,  the  Gauss-
Seidel method, etc. [63].

The steady-state security of power systems means that if the
operating point of the current system meets the flow equation
and various operating security constraints, the operating point
is statically secure, so that it is usually expressed as
 

ϕ(x,y) = 0,

Vmin
i ⩽ Vi ⩽ Vmax

i , ∀i ∈ N;

Pmin
i ⩽ Pg,i ⩽ Pmax

i , ∀i ∈ Ng;

Qmin
i ⩽ Qg,i ⩽ Qmax

i , ∀i ∈ Ng;
−Pmax

b,i− j ⩽ Pb,i− j ⩽ Pmax
b,i− j, ∀i, j ∈ N

(19)
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i
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i
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where  refers  to  the  flow  equation  of  alternating
current  (AC)  system,  refers  to  the  bus  node  set  of  the
system,  refers  to  the  generator  node  set  of  the  system,

 and  refer to the lower and upper voltage limits of
the -th  node,  and  refer  to  the  lower  and  upper
limits for the active power output of the -th system generator
node,  and  refer  to  the  lower  and upper  limits  for
the  reactive  power  output  of  the -th  system  generator  node,
and  and  refer  to  the  forward  and  backward
transmission power limits of the transmission line connecting
node  and node  in the system, respectively.  denotes the
active power output of the generator at node i,  represents
the reactive power output of the generator at node i, and 
denotes the active power flow on the branch connecting node i
to node j.

In  the  past,  the  steady-state  security  analysis  of  power
systems typically utilized a point-by-point method [64], which
is  known  for  its  high  computational  requirement  and  low
efficiency.  Recently,  some scholars  have  explored  the  use  of
security  region  methods [65–67] to  address  steady-state
security  problems  in  power  systems,  and  some  progress  has
been  made.  However,  it  remains  challenging  to  apply  these
methods  to  the  high-dimensional  static  security  domain
analysis of large power grids.  

B.  Transient Stability Analysis
The  transient  stability  of  power  systems  can  be  defined  as

the  ability  of  each  synchronous  generator  to  maintain
synchronous operation and transition to a new stable operation
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mode or restore to the original stable operation mode after the
power  system  is  subjected  to  serious  disturbances  such  as
short circuit [68]. The process is shown in Fig. 5.
 
 

Occurrence of large disturbance

Rapid change of generator 
electromagnetic power
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torque on rotor
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Figure 5 Transient process of power system.
 

In  theory,  the  transient  stability  of  power  systems  can  be
judged  by  equal-area  criteria [63].  The  sufficient  and
necessary condition for  transient  stability  is  that  the transient
stability  of  generator  can  be  guaranteed  if  the  maximum
deceleration  area  is  greater  than  or  equal  to  the  acceleration
area.  Otherwise,  the  generator  will  experience  a  loss  of
stability.
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Taking  one  machine  infinity  bus  for  example,  as  shown in
Fig.  6,  point  refers  to  a  normal  operating  point  of  the
system. Points  to  describe the complete transient process
of a power system subjected to a large disturbance, such as a
short  circuit  fault.  and  denote  the  normal  operating
power  and  fault-on  power  of  the  grid.  denotes  the  post-
fault  power.  denotes  the  mechanical  input  power  of  the
generator.  means that the power changes from  to 
at the short circuit moment of the system, the power of system
drops,  and  the  rotor  angle  has  no  mutation  due  to  inertia.

 is  the  short  circuit  period.  denotes  the  initial  rotor
angle  at  fault  onset.  The  short  circuit  fault  is  cleared  at 
moment.  At  this  moment,  the  surplus  power  of  rotor  is

.  As  the  rotor  accelerates,  the  rotor  angle 
increases  along  curve  until  the  fault  is  cleared. 
means that  power changes from  to  at  the moment of
fault  clearing,  and  the  rotor  angle  remains  unchanged.

 means  that  the  surplus  power  of  the  rotor  is
 after  the  fault  is  cleared,  the  rotor  slows

down,  and  the  rotor  angle  increases  to  point  along 
curve.  At  this  time,  the  rotor  speed  is .  However,  as

, the rotor speed will still slow down,  will
swing  along  curve  and  finally  stop  at  point ,  and  the
system makes a transition to a new stable operation mode.  If
it takes too long to clear a fault,  becomes greater, resulting
in ,  where  and  denote  the  rotor  angle  at  the
maximum  excursion  and  the  critical  rotor  angle,  and  the
system  will  face  a  loss  of  stability.  The  equal-area  criterion
can be used to obtain the system acceleration area.
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S abcd =
w δc
δ0

(P0−PII)dδ (20)

The physical significance is the kinetic energy obtained for
the rotor, and the system deceleration area is
 

S edg f =
w δ f

δc
(PIII−P0)dδ (21)

S abcd = S edg f

The physical significance is the kinetic energy that the rotor
loses. As the rotor speed is 1 at points b and f, it is known that

 by  the  law  of  conservation  of  energy,  the
system  can  maintain  transient  stability.  After  the  fault  is
cleared, the maximum deceleration area of the rotor is
 

S −max =
w δh
δc

(PIII−P0)dδ (22)

S −max > S abcd δ f < δhTherefore, if ,  can be guaranteed, and
the  and  system  can  maintain  transient  stability.  On  the
contrary, the system will face a loss of stability.

In  the  actual  research  and  application  of  transient  stability
evaluation for power systems, there are three main methods:

(1)  Time-domain  simulation  method [69]. This  method
uses the steady-state power flow as an initial value and solves
differential  algebraic  equations  by  numerical  integration  to
obtain  the  swing  curve  of  each  generator  rotor  under
disturbance.  Then,  it  determines  the  transient  stability  of  the
system  by  analyzing  the  rotor  power  angle  difference.
Although  this  method  provides  reliable  results,  it  is  time-
consuming and therefore only suitable for offline analysis.

(2)  Direct  method [70]. This  method  is  used  for  transient
stability  analysis  based  on  energy  viewpoints,  mainly
including the extended equal-area criterion and the Lyapunov-
based  transient  energy  function  method.  Such  methods  have
definite  physical  significance  but  conservative  computational
results, so it is difficult to determine the energy function.

(3) Data-driven method [71–74]. In this method, transient
stability  evaluation  is  modeled  as  a  classical  binary
classification  problem  in  machine  learning.  This  approach
does not require the establishment of a complex mathematical
model.  Instead,  it  involves  offline  fitting  of  the  mapping
relationship  between  physical  quantities  and  the  transient
stability  state  of  the  system using  historical  data.  Once  well-
trained models  are  obtained,  they can be deployed for  online
applications.  While  online  processing  is  fast,  it  requires
massive amount of historical operating data for support.

The  data-driven  method  for  power  system  security  and
stability analysis is a model-free approach that is characterized
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by  simple  principle,  high  accuracy,  and  fast  online
computation speed. In recent years, it has received significant
attention  and  research,  and  considerable  progress  has  been
made.  

C.   Principle  and  Shortcoming  of  Data-Driven  Power  System
Security and Stability Analysis

In  the  analysis  of  security  and  stability  in  power  systems,
data-driven  methods  usually  model  them  as  binary  or
multiclass  classification  problems [71–75],  ignoring  their
complex mathematical models and expressing them as
 

F (X)→ Y (23)
F (·)

X

Y
{security, unsecurity}

{nromal, alert, urgency, collapse}
F (X)→ Y

F (·)

where  represents  machine  learning  model  such  as
support vector machine, neural network, decision tree, etc. 
represents  physical  variable  of  the  system,  also  known  as
feature in the field of machine learning. The specific relevant
variables  are  selected  according  to  the  task.  represents  the
system state  set,  usually,  which  is  as  a
binary  task  or  as  a  multi-
class  task.  represents  the  complex  mapping
relationship  between  many  physical  variables  of  the  system
and the system state, obtained through fitting using .

With  the  rapid  development  of  artificial  intelligence
algorithms, various types of supervised learning models have
emerged,  including  those  for  data-driven  transient  stability
assessment.  However,  one  of  the  main  challenges  currently
faced  by  these  methods  is  the  availability  of  data.  The  data
collected from actual power systems during operation mainly
consist  of  samples  that  are  in  a  secure  and  stable  state.  This
results  in  a  significant  imbalance  between  the  number  of
samples  in  different  categories,  which  can  hinder  model
training.  Generating  data  through  simulation  software  is  an
option,  but  it  is  time-consuming  and  can  be  biased  towards
specific operating scenarios, making it difficult to apply data-
driven methods to the safety and stability assessment of power
systems in practice.

In recent  years,  generative models,  specifically GAN, have
emerged  as  a  convenient  method  for  producing  large-scale
datasets [22, 76, 77]. These models are capable of generating
a  vast  amount  of  data  with  the  same  distribution  as  real
samples, while only requiring a small amount of actual system
operation data. This approach effectively reduces the obstacles
to  the  practical  application  of  data-driven methods  and holds
great potential for future research.  

IV.  Application of AIGM in Security and Stability
Analysis of Power System

As a  branch  of  deep  learning  models,  AIGM has  achieved
impressive  results  in  multi-modal  data  generation  tasks  in
various  fields.  They  can  also  be  utilized  for  power  system
security  and  stability  analysis,  such  as  renewable  energy  and
load modeling, system anomaly detection, and fault diagnosis,
as shown in Table 1.

Regarding renewable energy scenario generation, to address
the  problem  of  uncertainty  in  photovoltaic  systems,  a  deep
generative  convolutional  graph  rough  VAE  algorithm  is
proposed  to  provide  accurate  spatiotemporal  photovoltaic

predictions [78].  An  improved  VAE  is  used  to  model  the
uncertainty  of  concentrating  solar  power  systems.  The
generated  operating  scenarios  can  help  with  the  subsequent
power system operation planning [79]. A large-scale regional
wind  energy  prediction  method  based  on  VAE  and  mixed
learning  is  proposed,  which  takes  into  account  the  volatility,
intermittency, and non-linearity of wind power output [80]. A
VAE method is applied to improve the single-step and multi-
step prediction accuracy of solar power generation [81].
  

Table 1 Application of AIGM in security and stability analysis.
Application field Method References

Renewable energy scenario generation
VAE [78–81]

GAN [76, 82–88]

Load modeling
VAE [89, 90]

GAN [91–94]

Anomaly detection and fault diagnosis
VAE [95, 96]

GAN [97, 98]

State assessment GAN [22, 77, 99]

Others
VAE [100]

GAN [101]

 
In the field of  renewable energy scenario generation,  GAN

is utilized to generate different specific scenarios conditioned
on  weather  events  and  specific  dates [76].  To  address  the
uncertainty  of  renewable  energy  day-ahead  generation,
conditional  style  based GAN is  proposed to  generate  reliable
day-ahead scenarios directly from historical data, and to better
characterize  the  spatiotemporal  features  of  renewable  energy
[82].  To  address  the  volatility  of  renewable  energy,
controllable GAN is utilized to generate controllable scenarios
covering a variety of statistical features. This method can even
generate  new  scenarios  different  from  previous  ones [83].
Controllable GAN with transparent latent space is proposed to
address the uncertainty of renewable energy generation, which
is applied to the time series data generation in wind power and
photovoltaic  fields [84].  An  improved  GAN  for  wind  power
generation  scenarios  is  proposed.  This  method  utilizes  a
gradient  penalty  term  to  improve  the  training  speed  and
alleviates  overfitting  problems  by  imposing  the  Lipschitz
constraint  on  networks [85].  A  distribution-free  wind  power
generation  scenario  generation  method  based  on  GAN  and
reinforcement learning is proposed, which generates scenarios
characterizing  the  variability  of  wind  power  generation  and
reducing uncertainty  risk [86].  An improved GAN is  utilized
to  extract  spatiotemporal  correlations  between  wind  power
and  photovoltaic  power  stations  from  measured  data,  and  to
generate  renewable  energy  scenarios  for  short-term
optimization  of  hydro-wind-solar  complementary  systems
[87].  A wind power scenario generation framework based on
conditional  improved  Wasserstein  GAN  is  proposed  to
generate  typical  wind  power  scenarios  containing  multiple
wind power stations [88].

Regarding the problem of load modeling in power systems,
a  load  generation  method  based  on  VAE  is  proposed  to
address  the  difficulty  of  modeling  electric  vehicle  charging
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loads  in  distribution  networks.  The  simulation  results
demonstrate  that  the  generated  data  conform  to  the  time
correlation  and  probability  distribution  characteristics  of  real
load  data [89].  A  conditional  VAE  method  is  utilized  to
generate multi-variable load states in power systems [90]. 3D
convolutional  GAN  is  used  to  model  electric  vehicle  load
demand. The method reduces the model error compared with
traditional  methods [91].  In  the  prediction  of  large-scale
building  power  demand,  the  performances  of  original  GAN,
cGAN,  semi-supervised  generative  adversarial  network
(SGAN),  InfoGAN,  and  auxiliary  classifier  generative
adversarial  network  (ACGAN)  are  compared.  The  results
show that cGAN and original GAN work better on large-scale
building  power  demand  prediction [92].  To  address  the
difficulty in obtaining datasets in power systems, a dataset for
energy consumption prediction models is  constructed using a
small  amount  of  real  data  based  on  RGAN [93].  A  scenario
generation  method  based  on  GAN  is  proposed  to  model  the
uncertainty  of  loads  and  to  evaluate  the  effect  of  uncertainty
modeling from different perspective [94].

Regarding  anomaly  detection  and  fault  diagnosis  in  power
systems,  the  uncertain  information  of  measurement  data  is
modeled  using  probabilistic  deep  auto-encoders  to  achieve
anomaly detection and reconstruction in  power  systems [95].
Based  on  phasor  measurement  unit  (PMU)  monitoring  data,
VAE  is  used  in  the  field  of  voltage  stability  evaluation  in
power systems. The method improves the accuracy and online
calculation  speed  of  the  model [96].  A  fault  detection  and
diagnosis  method  for  distribution  networks  based  on  VAE is
proposed  to  detect  and  locate  faults  in  distribution  networks.
This  method  has  strong  robustness [96].  A  real-time  event
detection  algorithm  based  on  bidirectional  GAN  is  proposed
to monitor power system events online [97]. The data with the
same distribution are generated as real bus features, including
bus voltage, frequency, phase angle, etc., for fault diagnosis in
power systems using GAN [98].

In the field of power system state assessment, a GAN-based
approach  is  proposed  to  handle  PMU  data  incompleteness,
which  shows  the  effect  in  power  system  dynamic  security
assessment [22].  A  model-free  data-driven  method  based  on
conditional  GAN  is  used  for  power  system  state  estimation.
The method can accurately estimate the corresponding system
states with given raw measurement values [77]. In the field of
data-driven  transient  stability  assessment,  where  sample
scarcity  and  imbalance  are  common problems,  a  controllable
sample  generation  framework  based  on  conditional  tabular
GAN  is  proposed  to  balance  the  transient  stability  samples
and  significantly  improve  the  performance  of  transient
stability  assessment  models [99].  A  conditional  auto-encoder
and  synchronized  measurement  vectors  are  utilized  to
calibrate  generator  parameters [100].  A  long-term  intelligent
power  generation  controller  combines  GAN  and
reinforcement learning for microgrids. The method solves the
problem of economic dispatch and control time mismatch and
exhibits higher control performance and lower economic costs
compared to traditional methods [101].

Despite the success of diffusion models in other fields, their
applications in the power systems domain are still limited and
require further research.  

V.  Problem and Prospect

AIGM, represented by techniques such as VAE, GAN, and
DM, has been extensively applied in areas such as image and
natural  language generation,  significantly altering the content
production mode in the internet domain. Nevertheless, various
types  of  generative  models  exhibit  some  inadequacies  and
research-worthy problems in different aspects.

VAE  is  the  result  of  combining  variational  inference  and
deep learning techniques in theory.  As a generative model,  it
has  gained  significant  attention  and  widespread  use  in
generating  continuous  data.  However,  the  generated  images
by VAE can suffer from issues such as blurriness, and there is
still  ample  space  for  improvement  in  their  practical
performance.

GAN  introduces  the  idea  of  adversarial  games  to  design  a
generator that samples data directly and learns a function that
approximates the distribution of real data. The discriminator is
used  to  distinguish  between  real  and  generated  data,  which
can fit  the distribution of the sampled data by optimizing the
network  parameters.  It  has  been  theoretically  proven  that
under  the  guidance  of  the  objective  function,  the  most  ideal
training result for GAN is to generate data that are completely
consistent  with  the  distribution  of  real  data.  While  GAN has
shown impressive results in practice, ensuring its convergence
and stability during training can be challenging in theory. This
can  result  in  GAN  generating  insufficiently  diverse  samples
and struggling to capture the entire distribution of real data.

Based  on  recent  advancements  in  research,  with  notable
releases of AI painting products such as Stable Diffusion, DM
has garnered substantial interest from researchers in academia
and industry. DM can generate high-quality data, but there are
still some outstanding issues that need to be addressed. Firstly,
due to the large number of sampling steps required to generate
data,  it  is  challenging  to  compare  its  data  generation  speed
with  other  generation  models  such  as  VAE  and  GAN.
Secondly,  most  current  diffusion-based  models  use  the
evidence lower bound (ELBO) of the negative log-likelihood
as the objective function for  model  training,  as  shown in Eq.
(13). However, there is currently no theoretical proof that the
negative  log-likelihood  and  its  ELBO  are  optimized
simultaneously.  Therefore,  the  inconsistency  between  the
actual optimization objective and the theoretical objective may
reduce the effectiveness of the model.

In  addition,  generative  models  have  been  extensively
employed  in  power  system  security  and  stability  analysis,
including  modeling  uncertainties  in  renewable  energy  and
load,  fault  diagnosis,  sample enhancement,  etc.  Nevertheless,
several  pressing  issues  still  need  to  be  addressed.  In  the
domain  of  power  system  security  and  stability  analysis,  it  is
essential  to  enhance  the  quality  of  data  generated  by
generative  models  and  establish  scientific  and  unified
evaluation  criteria  for  the  generated  data.  Additionally,  the
training  objectives,  optimization  processes,  and
interpretability of generative models demand further research.

Therefore,  concerning  the  future  artificial  intelligence
generative models and their applications in the field of power
system safety and stability analysis, the following points merit
further research:
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(1)  Unified  evaluation  method  for  generative  model.
Currently,  when  evaluating  the  quality  of  data  generated  by
generative  models,  researchers  typically  compare  the
generated  data  with  real  data  and  use  various  statistical
indicators  based  on  specific  application  requirements  and
prior  experience  to  assess  the  accuracy  of  the  generated
samples.  However,  there  is  no  unified  indicator  for  a  certain
type of generative model or a specific application. This results
in  inconsistent  and  incompatible  evaluation  criteria  when
assessing  the  effectiveness  of  the  model.  Therefore,
developing a unified evaluation method for generative models
is  a  crucial  problem  that  requires  further  research  and
exploration.

(2)  General  optimization  method  for  artificial
intelligence generative model. During the training process of
GAN, issues such as gradient disappearance or overfitting are
common,  making  it  difficult  to  ensure  the  convergence  and
stability  of  training.  These  problems  demand  higher
requirements for the network structure and objective function
design of GAN. Despite the development of diffusion models,
there  are  still  many  issues  worth  researching.  Firstly,  the
sampling  process  is  time-consuming  and  requires  further
optimization.  Secondly,  the  objective  function  design  issue
mentioned above merits further investigation. Therefore, there
is  a  large  scope  for  optimization  in  the  model  structure,
objective  function,  and  implementation  mechanism  of
artificial  intelligence  generative  models,  which  demands
exploring and researching.

(3)  Adaptation  of  AIGM  to  complex  mechanism
constraint  of  power  system. Unlike  industries  such  as  film
and  art,  the  industrial  sector  represented  by  power  systems
often  requires  the  system  to  satisfy  massive  and  complex
constraint  conditions  during  operation.  When  using  artificial
intelligence generative models to support power grid security
and  stability  analysis,  the  generated  data  need  to  ensure  that
they  are  distributed  within  the  secure  region  allowed  by  the
mechanism  constraints.  Thus,  integrating  the  mechanism
constraint information of power systems into existing general
generative  models  to  accomplish  the  efficient  and  stable
generation  of  feasible  samples  is  a  crucial  issue  that
necessitates exploration.

(4)  Application  path  design  of  AIGM  in  power  system
security and stability analysis. In the field of power system
security  and  stability  analysis,  significant  progress  has  been
made  in  applying  artificial  intelligence  generative  models.
However,  further research is needed to address critical  issues
such  as  generating  directional  power  samples  based  on
generative  models,  including  samples  distributed  near  the
secure boundary of the power system and samples with certain
typical  power  system  characteristics.  In  addition,  how  to
overcome the problem of sample imbalance in power systems
using  artificial  intelligence  generative  models,  and  how  to
design a unified and scientific model evaluation standard that
combines  the  characteristics  of  power  system  application
scenarios are all worth exploring and researching.  

VI.  Conclusion

This  paper  provides  an  overview  of  the  development  of

AIGM,  its  mainstream  algorithmic  principle,  and  current
application  in  various  fields.  Additionally,  the  paper  focuses
on the research status, key issues, and application prospects of
generative  models  in  the  field  of  power  system  security  and
stability analysis.

Finally,  this  paper  presents  several  issues  that  merit
exploration in  the  realm of  AIGM, along with  a  summary of
the  technical  hurdles  that  need  to  be  addressed  for  the
effective application of these models in power system security
and  stability  analysis.  Hopefully,  this  paper  will  serve  as  a
useful  reference  for  researchers  interested  in  the  intersection
of AIGM and power system security and stability analysis.
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