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   Abstract—Advancements  in  large  language  models  (LLMs)
have markedly improved the adaptability of artificial intelligence
(AI)  agents  in  dynamic  and  open  environments.  However,  with
the  growing  number  and  diversity  of  agents,  ensuring  secure,
reliable,  and autonomous collaboration among them has become
an urgent and critical challenge. To this end, this letter proposes
agent  reinforced  generation  (ARG)  to  establish  a  multi-agent
system  with  audit  trail  functionality,  privacy  compliance,  and
autonomous  coordination.  ARG  integrates  the  model  context
protocol  (MCP)  and agent-to-agent  (A2A)  protocol  to  define  the
rules and logic governing agent-to-agent communications as well
as  agent-to-tool/data  engagements.  Decentralized  autonomous
organizations  and  operations  (DAOs)  are  employed  to  enable
agents  to  coordinate  and  execute  tasks  in  a  transparent  and
tamper-resistant manner. Additionally, the operational process of
ARG  is  elaborated  from  task  issuance  to  completion  to  validate
the  auditability  and  immutability  of  task  coordination  and
execution.  Finally,  we  highlight  five  key  features  of  ARG,
including parallelism and throughput,  scalability  across  domains
and load,  fault  tolerance and graceful  failure,  resource efficiency
through  delegation,  as  well  as  data  security  and  privacy
protection,  positioning  it  as  a  promising  paradigm  for  the
realization of agentic intelligence.
  

I.  Introduction

L arge language models (LLMs), such as GPT-4, Claude,
and  DeepSeek,  have  revolutionized  generative  tasks
with  their  emergent  reasoning  and  in-context  learning

capabilities [1, 2]. However, their reliance on static pretrained
knowledge  leads  to  three  fundamental  limitations:  (1)
temporal  grounding:  LLMs  have  an  inherent  inability  to
access  post-training  information,  which  restricts  their
effectiveness  in  dealing  with  current  or  rapidly  changing
knowledge;  (2)  factual  hallucination:  LLMs  may  confidently
generate false statements, which undermines their reliability in
critical  applications;  and  (3)  passive  interaction:  LLMs  lack

the  ability  to  autonomously  use  tools  and  adapt  to  changing
environments, which limits their effectiveness in dynamic and
interactive  tasks [3].  These  constraints  hinder  their  feasible
deployment in real-world, ever-changing scenarios.

Retrieval-augmented  generation  (RAG)  shows  promise  in
addressing  the  limitations  of  LLMs  by  integrating  external
knowledge  retrieval  into  the  generation  pipeline [4].  While
effective  for  fact-intensive  tasks  and  open-domain
question&answer  (Q&A),  standard  RAG  suffers  from  rigid
retrieval policies that employ fixed query rewriting strategies,
unidirectional  data  flow  without  post-generation  feedback,
and  inability  to  orchestrate  multi-tool  workflows [5].  This
results  in  suboptimal  performance  when  handling  complex
queries  that  require  iterative  retrieval-reasoning  loops.
Although search-augmented generation and extension (SAGE)
[6] enhances RAG by extending search coverage and applying
multi-tier  caching  for  efficient  content  retrieval,  it  still  falls
short in overcoming the limitations above.

Recent  advances  in  artificial  intelligence  (AI)  agents
demonstrate  that  equipping  LLMs  with  goal-directed
autonomy  and  tool-use  capabilities  enables  dynamic  task
solving [7].  In  contrast  to  passive  RAG  systems,  agents  can
proactively adjust strategies based on environmental feedback,
such  as  improving  application  programming  interface  (API)
calls and validating intermediate results [8]. As tasks become
increasingly  complex,  this  naturally  leads  to  the  evolution
from single-agent systems to multi-agent systems. While they
offer  greater  computational  power,  these  systems  also
introduce  new  challenges  in  ensuring  secure  and  reliable
interactions both among agents and between agents and tools.
To  overcome  these  challenges,  it  is  essential  to  establish  a
novel  collaboration  paradigm  characterized  by  audit  trail,
privacy  compliance,  and  autonomous  coordination,  a  critical
prerequisite for scaling multi-agent applications.

To this end, this letter proposes agent-reinforced generation
(ARG)  as  a  novel  paradigm  for  agentic  intelligence.  ARG
integrates  model  context  protocol  (MCP) [9],  agent-to-agent
(A2A)  protocol [10],  and  decentralized  autonomous
organizations  and  operations  (DAOs) [11] to  enable  the
construction  of  secure,  efficient,  and  reliable  multi-agent
systems.  MCP  aims  at  seamless  integration  between  LLMs
and  external  functions,  tools,  and  data  sources.  A2A  defines
structured  communication  rules  that  enable  agents  to
coordinate, negotiate, and collaborate effectively. DAO refers
to  a  distributed  organizational  structure  built  on  blockchain
technology,  where  rules,  decision-making  processes,  and
operations are encoded in smart contracts. It  allows agents to
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coordinate  and  perform  tasks  in  a  decentralized,  transparent,
and  tamper-proof  manner,  guaranteeing  accountability,
traceability, and autonomous governance. By combining these
three  technologies,  ARG  empowers  multi-agent  systems  to
operate  with  shared  context,  dynamic  cooperation,  and
trustworthy execution.  This  integration ensures  reliable  agent
communication  and  rule-based  operations,  enabling  agentic
intelligence to arise from collective multi-agent interactions.  

II.  LLM and AI Agent

The  emergent  capabilities  demonstrated  by  LLMs  are
driving  profound  transformations  across  a  wide  array  of
domains. These capabilities arise not only from the support of
large-scale data training but also from the highly scalable and
general-purpose  Transformer  architecture [12].  Researchers
have  extensively  explored  the  adaptability  of  three
fundamental  Transformer-based  architectures:  encoder-only,
decoder-only,  and  encoder-decoder.  Encoder-only  models,
such  as  BERT [13] and  RoBERTa [14],  are  well-suited  for
tasks like text classification and sentiment analysis; however,
their  lack  of  autoregressive  generation  capabilities  poses
limitations  in  open-ended  generative  settings.  Encoder-
decoder  architectures,  such  as  T5 [15] and  BART [16],
integrate  understanding  and  generation  through  a  dual-tower
structure,  making  them suitable  for  tasks  like  translation  and
summarization.  Nevertheless,  they  face  structural  constraints
in  terms of  inference efficiency and contextual  coherence.  In
contrast,  decoder-only  models  follow  the  autoregressive
language  modeling  paradigm,  naturally  aligning  with  open-
ended generation and multitasking learning.  This architecture
has  become  the  backbone  of  general-purpose  LLMs,  giving
rise to a range of high-performance models, including GPT-3
[1],  LLaMA [17],  Vicuna [18],  and  DeepSeek [2],  which
exhibit  remarkable abilities in in-context learning,  instruction
following, and semantic reasoning.

Meanwhile, the modality-agnostic nature of the Transformer
architecture  has  facilitated structural  transfer  across  domains.
Beginning with  the  Vision Transformer  (ViT) [19],  a  unified
encoding  mechanism  was  introduced  into  visual  models.
Radford et al. [20] proposed a contrastive learning framework
based  on  image-text  alignment,  named  CLIP,  laying  the
foundation  for  zero-shot  multimodal  generalization.  Building
on this trajectory, researchers further aligned language models
with  visual  perception,  leveraging  large-scale  multimodal
training  to  develop  vision-language  models  (VLMs)  capable
of  cross-modal  understanding  and  generation.  Representative
models  include  GPT-4V [21],  LLaVA [22],  and  the
BLIP/BLIP-2 [23] series. Beyond representation learning, the
explicit orchestration of reasoning has emerged as a frontier in
LLM design.

With  the  continuous  advancement  of  LLMs,  AI  agents  are
gradually  evolving  from  early  rule-based  systems  into
complex,  intelligent  agents  empowered  by  LLMs  for
cognition, planning, and reasoning [24]. As illustrated in Fig. 1,
the  entire  process  is  initiated  by  user  queries  or  external
environmental  signals,  which  are  combined  with  predefined
prompt templates to construct the input for the model, thereby
triggering the task execution of the agent. The agent leverages

its  embedded  LLM  module  to  perform  task  planning  and
multi-turn reasoning while invoking external tools to carry out
specific  operations  and  perceive  environmental  feedback.
Simultaneously,  the  system  utilizes  vector  retrieval
mechanisms  to  access  historical  memory  or  dynamically
writes  key  information  from  the  current  interaction  into  the
memory module,  enabling context preservation and continual
learning.  Finally,  the  agent  generates  a  response  based on its
reasoning and execution results and returns it to the user [25].
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Figure 1 LLM-based AI agents.
 

As  AI  agent  architectures  evolve  from  basic  perception  to
complex  cognition,  enhancing  their  capabilities  in  multi-step
reasoning and structured planning has become a key focus of
current  research.  Rawat  et  al. [26] proposed  a  multi-step
planning mechanism to improve the action capabilities of the
agent.  Sumers  et  al. [27] introduced  the  CoALA  cognitive
framework,  enabling  language  models  to  acquire  stronger
decision organization and memory functions. Building on this,
the CoPlanner framework incorporates collaborative planning
strategies  to  support  task  decomposition  and  cooperative
reasoning  among  multiple  agents [28].  Meanwhile,  the
Chameleon system integrates search engines, code execution,
and multimodal input tools to create a highly composable and
executable  general-purpose  agent  framework [29].  These
studies  not  only enrich the functional  modules  and reasoning
mechanisms  of  intelligent  agents  but  also  lay  a  solid
foundation  for  constructing  systems  characterized  by  agentic
intelligence, providing critical support for the advancement of
ARG systems.  

III.  Prompt Engineering and RAG

Prompt  engineering  is  a  technique  for  optimizing  LLM
outputs. Its core idea is to guide the model to generate desired
outputs  by  designing  specific  input  prompts  without
modifying  the  internal  parameters  of  the  model.  Early
methods  relied  on  manually  crafted  templates  that  improved
output quality by providing explicit instructions or contextual
examples [30].

With  the  advancement  of  technology,  researchers  have
proposed  new  prompting  strategies  such  as  few-shot
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prompting [1] to overcome the limitations of manual template
design.  By  including  multiple  task  examples  in  the  prompt,
models  are  better  guided  to  understand  task  patterns  and
generate  target  outputs  more  accurately.  Further,  the
prompting  paradigm  has  evolved  to  chain  of  thought  (CoT)
prompting [31],  enabling  models  to  produce  structured
intermediate reasoning steps, thereby achieving breakthroughs
in  logic,  mathematics,  and  strategic  tasks.  In  parallel,  hybrid
prompting  strategies  such  as  prompt  chaining [32] and
reasoning  and  acting  (ReAct) [33] have  emerged,  facilitating
procedural control over multi-step tasks.

At  the  same  time,  lightweight  learning  approaches  such  as
AutoPrompt [34] and  prefix  tuning [35] have  shifted  prompt
engineering toward learnable and modular designs. However,
in  practical  applications,  especially  those  involving  external
domain  knowledge  or  long-tail  factual  queries,  the  intrinsic
understanding  of  LLMs  often  falls  short  of  delivering  high-
accuracy  results.  Against  this  backdrop,  prompt  engineering
has  increasingly  merged  with  external  knowledge  injection,
giving rise to a new RAG paradigm. RAG inherits the guiding
principle of prompts at the architectural level but augments it
with  dynamic  knowledge  retrieval  by  integrating  retrievers
and  knowledge  bases.  This  backend  enhancement  provides
“factual  support” for  prompts.  As  shown  in Fig.  2,  the  basic
structure consists  of  three components:  retrievers,  generators,
and  knowledge  bases.  The  retriever  encodes  the  user  query
and retrieves the most relevant text passages from an external
knowledge base; these passages, along with the original input,
are  then  passed  to  the  LLM-based  generator  to  produce  the
final response based on the enriched context.  The knowledge
base  is  responsible  for  storing  and  organizing  information
sources [4].  Obviously,  RAG  addresses  the  limitations  of
static  knowledge  in  LLMs  by  enabling  access  to  broader
and  more  up-to-date  information  resources,  significantly
improving factual consistency and timeliness.
  

User Retriever Knowledge base

GeneratorResponse

Query Searching

Relevant text

Query + Text

Generating

 
Figure 2 Retrieval augmented generation.
 

As  the  technology  matures,  RAG  architectures  have
diversified in their design. In the retriever component, Mala et
al.  explored  hybrid  retrieval  strategies  that  combine  sparse
retrieval  methods  with  dense  retrieval  to  balance  high  recall
and  semantic  relevance [36].  In  the  generator  component,
beyond  the  traditional  encoder-decoder  architectures,  Izacard
et  al.  proposed  using  decoder-only  structures  with  prompt
reconstruction  to  improve  generation  efficiency [37].
Moreover, RAG systems are evolving toward more advanced

capabilities,  such  as  multi-turn  retrieval,  cross-document
aggregation  (Multi-hop  RAG) [38],  and  knowledge  graph
enhancement (Graph-RAG) [39], which enable the support of
complex  reasoning  chains  and  long-context  dependencies.
SAGE [40] is a representative advanced variant that enhances
RAG by enabling dynamic extraction of relevant information
from external data sources. It introduces an intelligent routing
unit  to  adaptively  switch  between  search  and  retrieval
processes, and incorporates a hierarchical management system
of  internal  and  external  caches  to  efficiently  handle  the
exchange between external data and the limited input contents
of  LLMs.  Despite  its  advantages  in  mitigating  static
knowledge  limitations,  RAG  still  faces  challenges  in  task
control,  state  tracking,  and  proactive  reasoning [41].  These
limitations have motivated emerging research into integrating
agent-based  mechanisms,  driving  the  evolution  of  the
architecture toward the ARG paradigm.  

IV.  Agent Reinforced Generation

ARG is a novel LLM-based multi-agent system architecture
that  integrates  MCP,  A2A,  and  DAO,  aiming  to  build  a
trustworthy,  efficient,  and  cross-domain  collaborative  agent
ecosystem  in  open  environments.  As  illustrated  in Fig.  3,
centered on agents, ARG involves inter-agent communication
and  collaboration,  agent  access  to  underlying  tools  and  data,
decentralized  governance  among  all  agents,  and  integration
with  external  data  sources,  covering  the  full  spectrum  of
perception, decision-making, collaboration, and execution.  

A.  Inter-Agent Collaboration
In  ARG,  there  are  two  types  of  LLM-based  agents:  client

agents  and  remote  agents,  whose  roles  are  dynamically
interchangeable.  Client  agents  act  as  both  task  initiators  and
central  coordinators,  responsible  for  interpreting  user  intent,
planning tasks, and managing overall execution. When a task
exceeds  the  local  capabilities  of  the  client  agent  or  involves
heterogeneous  resources,  it  invokes  the  A2A  protocol  to
establish  communication  with  multiple  functionally  diverse
remote  agents.  Various  tasks  are  then  delegated  to  these
remote  agents  according  to  their  respective  capabilities  to
ensure  efficient  and  effective  task  completion.  Through  the
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Figure 3 Basic architecture of ARG.
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A2A  protocol,  agents  can  perform  four  core  functions:
capability  discovery,  task  and  state  management,  secure
collaboration,  and  user  experience  negotiation.  Specifically,
capability  discovery  enables  agents  to  identify  and  select
optimal  collaborators  through  capability  broadcasting,  task
and  state  management  coordinates  complete  task  lifecycle
execution, secure collaboration achieves protected information
exchange without exposing internal logic, and user experience
negotiation dynamically adapts interaction formats to interface
capabilities.  This  ensures  that  inter-agent  interactions  are
interpretable, consistent, and resilient, while delivering a more
adaptive and satisfying user experience.  

B.  Knowledge and Tool Invocation
During  task  execution,  LLM-based  agents  must  access

external  knowledge  and  tools  to  support  computation  and
decision-making.  ARG  employs  MCP  to  enable  context
sharing between agents and the external environment, thereby
ensuring  the  reliability  and  accuracy  of  LLM-generated
content.  MCP  allows  agents  to  extract  dynamic  contextual
information  such  as  historical  task  trajectories,  user
preferences,  and  tool  feedback.  This  information  is  injected
into  the  current  input  context  of  the  LLM  to  enhance  the
coherence  and  depth  of  reasoning,  helping  agents  better
comprehend  task  contexts  and  user  requirements.
Additionally,  MCP  supports  integration  with  external
databases  and  vector  knowledge  bases,  enabling  agents  to
retrieve  real-time  data,  industry  regulations,  and  domain-
specific  documents.  This  capability  not  only  improves  the
accuracy  of  responses  but  also  significantly  enhances  the
trustworthiness and professionalism of the agent. When agents
need  to  invoke  tools  or  execute  functions,  MCP  bridges  the
model outputs with tool execution and feeds the intermediate
states  returned  by  the  tools  back  into  the  context  for
subsequent  reasoning.  Through  these  mechanisms,  MCP
endows  agents  with  the  capabilities  of “memory  retention”,
“knowledge  integration”,  and “tool  invocation”,  advancing
LLMs  from  pure  language  generators  to  intelligent  agents
capable of task execution.  

C.  Decentralized Operation
The  DAO,  built  on  blockchain  and  smart  contracts,  is

employed  in  ARG  to  ensure  trustworthy  task  execution,
regulatory  compliance,  and  auditable  behavior  within  multi-
agent  environments.  Through  smart  contracts,  the  DAO
defines  and  enforces  permissions,  reward  distributions,  and
resource usage for task collaboration in a distributed network,
ensuring  that  each  agent’s  behavior  adheres  to  preset
constraints.  Meanwhile,  all  interactions  between  agents  are
recorded  on  blockchain  to  form  audit  logs,  preventing
malicious  tampering  and  data  loss,  thereby  guaranteeing
transparency  and  traceability  of  operations.  When  client
agents  collaborate  with  untrusted  remote  agents,  the  DAO
leverages on-chain reputation systems, policy verification, and
arbitration  mechanisms  to  effectively  reduce  strategic  risks,
achieving “trustless  trust”.  Furthermore,  the  DAO
complements  MCP  and  A2A  protocols:  MCP  provides  the
operational  context  while  DAO  ensures  the  verifiability  and

decentralized  execution  of  actions;  A2A  establishes
communication  channels  while  DAO  guarantees  compliance
and accountability of communication results.  

D.  Tool and Data Resource
The underlying infrastructure of ARG is composed of three

types  of  resources,  which  are  continuously  integrated  via
MCP  to  provide  agents  with  environmental  awareness,  task
feedback, and capability augmentation, as follows:

(1) Toolkit: Toolkit  includes  external  APIs,  computational
functions, and plugin tools that provide executable operations
for agents across various tasks.

(2) Function library: Function library encapsulates domain-
specific functional components (e.g., path planners and image
analyzers),  enabling  enhanced  capabilities  and  rapid  transfer
learning for agents in multimodal tasks.

(3) Database: Database stores structured data, user records,
intermediate  states,  and  on-chain  transactions,  supporting
continuous learning and long-term reasoning for agents.

Clearly,  ARG  extends  and  upgrades  the  traditional  RAG
paradigm  by  not  only  incorporating  external  knowledge
retrieval  but  also  integrating  tool  invocation,  function
execution,  and  decentralized  data  interaction  into  a  unified
multi-agent  context.  While  RAG  focuses  primarily  on
enhancing  language  models  through  retrieved  textual
information,  ARG  transforms  LLMs  into  active  agents
capable  of  perceiving  dynamic  environments,  coordinating
with  peers,  executing  domain-specific  functions,  and
maintaining  memory  through  structured  data.  This  shift
enables  ARG  to  support  more  complex,  interactive,  and
autonomous  decision-making  processes  across  diverse
scenarios,  such  as  smart  manufacturing [42],  intelligent
transportation and logistics [43], and city management [44].  

E.  Operational Process
The detailed operational process of ARG systems, spanning

from task issuance to completion, is presented to demonstrate
the  system’s  transparency,  integrity,  and  accountability,  and
consists of the following steps.

Step 1: Task reception and context sensing. When a user
or  an  external  system sends  a  request  to  an  agent,  the  agent,
which  is  regarded  as  a  client  agent,  perceives  the  necessary
contextual  information  through  MCP  that  includes  the  task
background,  relevant  history,  system  status,  and  tool
resources.

Step  2:  Context  retrieval  and  assembly. Based  on  the
perceived information, the client agent dynamically constructs
a  context  structure  for  LLMs  by  retrieving  and  integrating
tools, functions, and data resources.

Step 3: Context injection and task assessment/completion.
The client agent performs a preliminary evaluation of the task
to determine whether it can be completed independently. If so,
it leverages the contextual information and tools integrated in
the  previous  step  to  execute  the  task.  Otherwise,  it  generates
task  metadata,  including  structured  objectives,  expected
outcomes,  and  required  capabilities,  as  preparatory  material
for a proposal.

Step  4:  Task  registration  and  proposal  for  DAO. If  the
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task  requires  collaborative  processing,  the  client  agent
registers  the  task  metadata  on-chain  and  submits  a  proposal
through  a  smart  contract  to  request  cooperative  support  for
remote agents in the DAO.

Step  5:  Member  voting  and  task  allocation. Upon
receiving  the  proposal,  remote  member  agents  volunteer  for
collaboration and engage in decentralized voting,  after which
the  smart  contract  finalizes  role  assignments  and  resource
allocation based on the voting outcome.

Step  6:  A2A  discovery  and  task  dispatching. The  client
agent establishes a collaborative connection with the selected
remote agents via the A2A protocol and transmits the subtask
descriptions  and  contextual  information  in  an  encrypted
manner.

Step  7:  Collaborative  execution  and  contextualization.
Upon receiving the subtask, the remote agents follow the same
process  as  the  client  agent  by  performing  steps  1,  2,  and  3
to  complete  the  task.  Throughout  the  execution,  they
synchronize  the  task  status,  intermediate  results,  and  any
exceptions  with  the  client  agent  in  real  time  via  the  A2A
protocol.

Step  8:  Result  delivery  and  reasoning  integration.
Remote agents deliver the final  results  to the client  agent via
an  encrypted  channel,  and  the  client  agent  analyzes  and
consolidates these results to formulate a response.

Step  9:  Log  recording  and  incentive  settlement. The
context  and  activity  logs  of  the  entire  execution  process  are
recorded  on  the  blockchain,  and  smart  contracts  distribute
rewards to each participating agent and update their on-chain
reputations. This marks the end of the task execution.  

V.  Characteristic Analysis

The  design  of  the  ARG  emphasizes  five  core  features:
parallelism  and  throughput,  scalability  across  domains  and
load,  fault  tolerance  and  graceful  failure,  resource  efficiency
through  delegation,  as  well  as  data  security  and  privacy
protection,  which  collectively  support  the  effectiveness  and
flexibility of the agent in handling complex tasks.

(1) Parallelism  and  throughput: ARG  supports  task
distribution  across  multiple  agents  via  the  A2A  protocol
and  enables  parallel  execution  through  MCP.  Achieving
significant  speedups  requires  that  the  tasks  themselves  be
inherently  parallelizable  and  that  intelligent  coordination
mechanisms  are  in  place  to  manage  inter-task  dependencies
and  integrate  results,  but  coordination  itself  introduces
additional overhead.

(2) Scalability  across  domains  and  load: ARG  enables
easier  scalability  by  adding  more  agents  or  MCP  servers.
However,  real-world  scalability  depends  not  only  on  the
protocols  themselves  but  also  on  factors  such  as  discovery
service speed,  network latency,  coordination complexity,  and
the  performance  of  the  underlying  AI  models.  Additionally,
the  interface  between  A2A  and  MCP  can  itself  become  a
performance bottleneck.

(3) Fault  tolerance  and  graceful  failure: From  a
decentralized  perspective,  ARG  offers  potential  for  backup
options.  Building  a  robust  decentralized  fault-tolerance
mechanism requires agents to reliably detect failures, evaluate

alternatives,  and  dynamically  replan.  This  approach  makes
agents  far  more  complex  than  simple  error-handling  units,
endowing  them  with  greater  autonomy  and  coordination
capabilities  to  ensure  high  availability  and  robustness  in  a
system without centralized control.

(4) Resource  efficiency  through  delegation: ARG
facilitates  intelligent  task  allocation  and  coordination  by
assessing  task  complexity  and  agent  capabilities,  while
utilizing  encapsulated  functions  or  off-the-shelf  tools  to
simplify  tasks,  thereby  enabling  efficient  resource  utilization
and effective task execution. This requires the prior collection
and efficient retrieval of tools and functions.

(5) Data security and privacy protection: ARG leverages
a  blockchain-based  DAO  with  smart  contracts  to  ensure
transparent,  fair,  and  immutable  management  of  task
permissions, resource use, and rewards. All agent interactions
are  recorded  on-chain  for  traceability  and  auditability,
preventing tampering and data loss. It employs identity-based
and permission-based access controls to protect sensitive data
and supports privacy technologies like differential privacy and
homomorphic encryption, complying with privacy regulations
through  blockchain’s  transparent  auditing.  However,  this
introduces  increased  computational  and  storage  overhead,
which may impact the real-time responsiveness and scalability
of the system.  

VI.  Conclusion

This letter provides an in-depth analysis of the limitations of
LLMs,  RAG,  and  AI  agents.  To  overcome  these  limitations,
an  ARG  paradigm  is  proposed  to  achieve  secure,  efficient,
scalable, and autonomous collaborative task execution among
agents  in  complex  open  environments.  In  ARG,  MCP,  A2A
protocol, and DAO are applied to enable seamless integration
between  LLMs  and  external  tools,  structured  and  secure
communication  among  agents,  as  well  as  decentralized
coordination  and  governance.  We  believe  that  ARG  lays  a
foundational  pathway  for  the  progression  from  artificial
intelligence to agentic intelligence, and holds strong potential
for enabling truly self-learning, self-organizing, self-evolving,
and  context-aware  intelligent  systems  with  autonomous
intelligence.  
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