76 | COMMUNICATIONS AND LETTERS

THE INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 30, NO. 1, MARCH 2025

From RAG to ARG.: Agent Reinforced Generation

for Agentic Intelligence

Jing Yang, Yonglin Tian, Fei Lin, and Fei-Yue Wang

Abstract—Advancements in large language models (LLMs)
have markedly improved the adaptability of artificial intelligence
(AI) agents in dynamic and open environments. However, with
the growing number and diversity of agents, ensuring secure,
reliable, and autonomous collaboration among them has become
an urgent and critical challenge. To this end, this letter proposes
agent reinforced generation (ARG) to establish a multi-agent
system with audit trail functionality, privacy compliance, and
autonomous coordination. ARG integrates the model context
protocol (MCP) and agent-to-agent (A2A) protocol to define the
rules and logic governing agent-to-agent communications as well
as agent-to-tool/data engagements. Decentralized autonomous
organizations and operations (DAOs) are employed to enable
agents to coordinate and execute tasks in a transparent and
tamper-resistant manner. Additionally, the operational process of
ARG is elaborated from task issuance to completion to validate
the auditability and immutability of task coordination and
execution. Finally, we highlight five key features of ARG,
including parallelism and throughput, scalability across domains
and load, fault tolerance and graceful failure, resource efficiency
through delegation, as well as data security and privacy
protection, positioning it as a promising paradigm for the
realization of agentic intelligence.

1. INTRODUCTION

arge language models (LLMs), such as GPT-4, Claude,

and DeepSeek, have revolutionized generative tasks

with their emergent reasoning and in-context learning
capabilities [1, 2]. However, their reliance on static pretrained
knowledge leads to three fundamental limitations: (1)
temporal grounding: LLMs have an inherent inability to
access post-training information, which restricts their
effectiveness in dealing with current or rapidly changing
knowledge; (2) factual hallucination: LLMs may confidently
generate false statements, which undermines their reliability in
critical applications; and (3) passive interaction: LLMs lack
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the ability to autonomously use tools and adapt to changing
environments, which limits their effectiveness in dynamic and
interactive tasks [3]. These constraints hinder their feasible
deployment in real-world, ever-changing scenarios.

Retrieval-augmented generation (RAG) shows promise in
addressing the limitations of LLMs by integrating external
knowledge retrieval into the generation pipeline [4]. While
effective for fact-intensive tasks and open-domain
question&answer (Q&A), standard RAG suffers from rigid
retrieval policies that employ fixed query rewriting strategies,
unidirectional data flow without post-generation feedback,
and inability to orchestrate multi-tool workflows [5]. This
results in suboptimal performance when handling complex
queries that require iterative retrieval-reasoning loops.
Although search-augmented generation and extension (SAGE)
[6] enhances RAG by extending search coverage and applying
multi-tier caching for efficient content retrieval, it still falls
short in overcoming the limitations above.

Recent advances in artificial intelligence (AI) agents
demonstrate that equipping LLMs with goal-directed
autonomy and tool-use capabilities enables dynamic task
solving [7]. In contrast to passive RAG systems, agents can
proactively adjust strategies based on environmental feedback,
such as improving application programming interface (API)
calls and validating intermediate results [8]. As tasks become
increasingly complex, this naturally leads to the evolution
from single-agent systems to multi-agent systems. While they
offer greater computational power, these systems also
introduce new challenges in ensuring secure and reliable
interactions both among agents and between agents and tools.
To overcome these challenges, it is essential to establish a
novel collaboration paradigm characterized by audit trail,
privacy compliance, and autonomous coordination, a critical
prerequisite for scaling multi-agent applications.

To this end, this letter proposes agent-reinforced generation
(ARG) as a novel paradigm for agentic intelligence. ARG
integrates model context protocol (MCP) [9], agent-to-agent
(A2A) protocol [10], and decentralized autonomous
organizations and operations (DAOs) [11] to enable the
construction of secure, efficient, and reliable multi-agent
systems. MCP aims at seamless integration between LLMs
and external functions, tools, and data sources. A2A defines
structured communication rules that enable agents to
coordinate, negotiate, and collaborate effectively. DAO refers
to a distributed organizational structure built on blockchain
technology, where rules, decision-making processes, and
operations are encoded in smart contracts. It allows agents to
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coordinate and perform tasks in a decentralized, transparent,
and tamper-proof manner, guaranteeing accountability,
traceability, and autonomous governance. By combining these
three technologies, ARG empowers multi-agent systems to
operate with shared context, dynamic cooperation, and
trustworthy execution. This integration ensures reliable agent
communication and rule-based operations, enabling agentic
intelligence to arise from collective multi-agent interactions.

II. LLM AND AI AGENT

The emergent capabilities demonstrated by LLMs are
driving profound transformations across a wide array of
domains. These capabilities arise not only from the support of
large-scale data training but also from the highly scalable and
general-purpose Transformer architecture [12]. Researchers
have extensively explored the adaptability of three
fundamental Transformer-based architectures: encoder-only,
decoder-only, and encoder-decoder. Encoder-only models,
such as BERT [13] and RoBERTa [14], are well-suited for
tasks like text classification and sentiment analysis; however,
their lack of autoregressive generation capabilities poses
limitations in open-ended generative settings. Encoder-
decoder architectures, such as TS5 [15] and BART [16],
integrate understanding and generation through a dual-tower
structure, making them suitable for tasks like translation and
summarization. Nevertheless, they face structural constraints
in terms of inference efficiency and contextual coherence. In
contrast, decoder-only models follow the autoregressive
language modeling paradigm, naturally aligning with open-
ended generation and multitasking learning. This architecture
has become the backbone of general-purpose LLMs, giving
rise to a range of high-performance models, including GPT-3
[1], LLaMA [17], Vicuna [18], and DeepSeek [2], which
exhibit remarkable abilities in in-context learning, instruction
following, and semantic reasoning.

Meanwhile, the modality-agnostic nature of the Transformer
architecture has facilitated structural transfer across domains.
Beginning with the Vision Transformer (ViT) [19], a unified
encoding mechanism was introduced into visual models.
Radford et al. [20] proposed a contrastive learning framework
based on image-text alignment, named CLIP, laying the
foundation for zero-shot multimodal generalization. Building
on this trajectory, researchers further aligned language models
with visual perception, leveraging large-scale multimodal
training to develop vision-language models (VLMSs) capable
of cross-modal understanding and generation. Representative
models include GPT-4V [21], LLaVA [22], and the
BLIP/BLIP-2 [23] series. Beyond representation learning, the
explicit orchestration of reasoning has emerged as a frontier in
LLM design.

With the continuous advancement of LLMs, Al agents are
gradually evolving from early rule-based systems into
complex, intelligent agents empowered by LLMs for
cognition, planning, and reasoning [24]. As illustrated in Fig. 1,
the entire process is initiated by user queries or external
environmental signals, which are combined with predefined
prompt templates to construct the input for the model, thereby
triggering the task execution of the agent. The agent leverages

its embedded LLM module to perform task planning and
multi-turn reasoning while invoking external tools to carry out
specific operations and perceive environmental feedback.
Simultaneously, the system utilizes vector retrieval
mechanisms to access historical memory or dynamically
writes key information from the current interaction into the
memory module, enabling context preservation and continual
learning. Finally, the agent generates a response based on its
reasoning and execution results and returns it to the user [25].
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Figure 1 LLM-based Al agents.

As Al agent architectures evolve from basic perception to
complex cognition, enhancing their capabilities in multi-step
reasoning and structured planning has become a key focus of
current research. Rawat et al. [26] proposed a multi-step
planning mechanism to improve the action capabilities of the
agent. Sumers et al. [27] introduced the CoALA cognitive
framework, enabling language models to acquire stronger
decision organization and memory functions. Building on this,
the CoPlanner framework incorporates collaborative planning
strategies to support task decomposition and cooperative
reasoning among multiple agents [28]. Meanwhile, the
Chameleon system integrates search engines, code execution,
and multimodal input tools to create a highly composable and
executable general-purpose agent framework [29]. These
studies not only enrich the functional modules and reasoning
mechanisms of intelligent agents but also lay a solid
foundation for constructing systems characterized by agentic
intelligence, providing critical support for the advancement of
ARG systems.

III. PROMPT ENGINEERING AND RAG

Prompt engineering is a technique for optimizing LLM
outputs. Its core idea is to guide the model to generate desired
outputs by designing specific input prompts without
modifying the internal parameters of the model. Early
methods relied on manually crafted templates that improved
output quality by providing explicit instructions or contextual
examples [30].

With the advancement of technology, researchers have
proposed new prompting strategies such as few-shot
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prompting [1] to overcome the limitations of manual template
design. By including multiple task examples in the prompt,
models are better guided to understand task patterns and
generate target outputs more accurately. Further, the
prompting paradigm has evolved to chain of thought (CoT)
prompting [31], enabling models to produce structured
intermediate reasoning steps, thereby achieving breakthroughs
in logic, mathematics, and strategic tasks. In parallel, hybrid
prompting strategies such as prompt chaining [32] and
reasoning and acting (ReAct) [33] have emerged, facilitating
procedural control over multi-step tasks.

At the same time, lightweight learning approaches such as
AutoPrompt [34] and prefix tuning [35] have shifted prompt
engineering toward learnable and modular designs. However,
in practical applications, especially those involving external
domain knowledge or long-tail factual queries, the intrinsic
understanding of LLMs often falls short of delivering high-
accuracy results. Against this backdrop, prompt engineering
has increasingly merged with external knowledge injection,
giving rise to a new RAG paradigm. RAG inherits the guiding
principle of prompts at the architectural level but augments it
with dynamic knowledge retrieval by integrating retrievers
and knowledge bases. This backend enhancement provides
“factual support” for prompts. As shown in Fig. 2, the basic
structure consists of three components: retrievers, generators,
and knowledge bases. The retriever encodes the user query
and retrieves the most relevant text passages from an external
knowledge base; these passages, along with the original input,
are then passed to the LLM-based generator to produce the
final response based on the enriched context. The knowledge
base is responsible for storing and organizing information
sources [4]. Obviously, RAG addresses the limitations of
static knowledge in LLMs by enabling access to broader
and more up-to-date information resources, significantly
improving factual consistency and timeliness.

A Query =' Searching
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Figure 2 Retrieval augmented generation.

As the technology matures, RAG architectures have
diversified in their design. In the retriever component, Mala et
al. explored hybrid retrieval strategies that combine sparse
retrieval methods with dense retrieval to balance high recall
and semantic relevance [36]. In the generator component,
beyond the traditional encoder-decoder architectures, Izacard
et al. proposed using decoder-only structures with prompt
reconstruction to improve generation efficiency [37].
Moreover, RAG systems are evolving toward more advanced

capabilities, such as multi-turn retrieval, cross-document
aggregation (Multi-hop RAG) [38], and knowledge graph
enhancement (Graph-RAG) [39], which enable the support of
complex reasoning chains and long-context dependencies.
SAGE [40] is a representative advanced variant that enhances
RAG by enabling dynamic extraction of relevant information
from external data sources. It introduces an intelligent routing
unit to adaptively switch between search and retrieval
processes, and incorporates a hierarchical management system
of internal and external caches to efficiently handle the
exchange between external data and the limited input contents
of LLMs. Despite its advantages in mitigating static
knowledge limitations, RAG still faces challenges in task
control, state tracking, and proactive reasoning [41]. These
limitations have motivated emerging research into integrating
agent-based mechanisms, driving the evolution of the
architecture toward the ARG paradigm.

IV. AGENT REINFORCED GENERATION

ARG is a novel LLM-based multi-agent system architecture
that integrates MCP, A2A, and DAO, aiming to build a
trustworthy, efficient, and cross-domain collaborative agent
ecosystem in open environments. As illustrated in Fig. 3,
centered on agents, ARG involves inter-agent communication
and collaboration, agent access to underlying tools and data,
decentralized governance among all agents, and integration
with external data sources, covering the full spectrum of
perception, decision-making, collaboration, and execution.

A. Inter-Agent Collaboration

In ARG, there are two types of LLM-based agents: client
agents and remote agents, whose roles are dynamically
interchangeable. Client agents act as both task initiators and
central coordinators, responsible for interpreting user intent,
planning tasks, and managing overall execution. When a task
exceeds the local capabilities of the client agent or involves
heterogeneous resources, it invokes the A2A protocol to
establish communication with multiple functionally diverse
remote agents. Various tasks are then delegated to these
remote agents according to their respective capabilities to
ensure efficient and effective task completion. Through the
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Figure 3 Basic architecture of ARG.
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A2A protocol, agents can perform four core functions:
capability discovery, task and state management, secure
collaboration, and user experience negotiation. Specifically,
capability discovery enables agents to identify and select
optimal collaborators through capability broadcasting, task
and state management coordinates complete task lifecycle
execution, secure collaboration achieves protected information
exchange without exposing internal logic, and user experience
negotiation dynamically adapts interaction formats to interface
capabilities. This ensures that inter-agent interactions are
interpretable, consistent, and resilient, while delivering a more
adaptive and satisfying user experience.

B. Knowledge and Tool Invocation

During task execution, LLM-based agents must access
external knowledge and tools to support computation and
decision-making. ARG employs MCP to enable context
sharing between agents and the external environment, thereby
ensuring the reliability and accuracy of LLM-generated
content. MCP allows agents to extract dynamic contextual
information such as historical task trajectories, user
preferences, and tool feedback. This information is injected
into the current input context of the LLM to enhance the
coherence and depth of reasoning, helping agents better
comprehend task contexts and wuser requirements.
Additionally, MCP supports integration with external
databases and vector knowledge bases, enabling agents to
retrieve real-time data, industry regulations, and domain-
specific documents. This capability not only improves the
accuracy of responses but also significantly enhances the
trustworthiness and professionalism of the agent. When agents
need to invoke tools or execute functions, MCP bridges the
model outputs with tool execution and feeds the intermediate
states returned by the tools back into the context for
subsequent reasoning. Through these mechanisms, MCP
endows agents with the capabilities of “memory retention”,
“knowledge integration”, and “tool invocation”, advancing
LLMs from pure language generators to intelligent agents
capable of task execution.

C. Decentralized Operation

The DAO, built on blockchain and smart contracts, is
employed in ARG to ensure trustworthy task execution,
regulatory compliance, and auditable behavior within multi-
agent environments. Through smart contracts, the DAO
defines and enforces permissions, reward distributions, and
resource usage for task collaboration in a distributed network,
ensuring that each agent’s behavior adheres to preset
constraints. Meanwhile, all interactions between agents are
recorded on blockchain to form audit logs, preventing
malicious tampering and data loss, thereby guaranteeing
transparency and traceability of operations. When client
agents collaborate with untrusted remote agents, the DAO
leverages on-chain reputation systems, policy verification, and
arbitration mechanisms to effectively reduce strategic risks,
achieving  “trustless trust”. Furthermore, the DAO
complements MCP and A2A protocols: MCP provides the
operational context while DAO ensures the verifiability and

decentralized execution of actions; A2A establishes
communication channels while DAO guarantees compliance
and accountability of communication results.

D. Tool and Data Resource

The underlying infrastructure of ARG is composed of three
types of resources, which are continuously integrated via
MCP to provide agents with environmental awareness, task
feedback, and capability augmentation, as follows:

(1) Toolkit: Toolkit includes external APIs, computational
functions, and plugin tools that provide executable operations
for agents across various tasks.

(2) Function library: Function library encapsulates domain-
specific functional components (e.g., path planners and image
analyzers), enabling enhanced capabilities and rapid transfer
learning for agents in multimodal tasks.

(3) Database: Database stores structured data, user records,
intermediate states, and on-chain transactions, supporting
continuous learning and long-term reasoning for agents.

Clearly, ARG extends and upgrades the traditional RAG
paradigm by not only incorporating external knowledge
retrieval but also integrating tool invocation, function
execution, and decentralized data interaction into a unified
multi-agent context. While RAG focuses primarily on
enhancing language models through retrieved textual
information, ARG transforms LLMs into active agents
capable of perceiving dynamic environments, coordinating
with peers, executing domain-specific functions, and
maintaining memory through structured data. This shift
enables ARG to support more complex, interactive, and
autonomous decision-making processes across diverse
scenarios, such as smart manufacturing [42], intelligent
transportation and logistics [43], and city management [44].

E. Operational Process

The detailed operational process of ARG systems, spanning
from task issuance to completion, is presented to demonstrate
the system’s transparency, integrity, and accountability, and
consists of the following steps.

Step 1: Task reception and context sensing. When a user
or an external system sends a request to an agent, the agent,
which is regarded as a client agent, perceives the necessary
contextual information through MCP that includes the task
background, relevant history, system status, and tool
resources.

Step 2: Context retrieval and assembly. Based on the
perceived information, the client agent dynamically constructs
a context structure for LLMs by retrieving and integrating
tools, functions, and data resources.

Step 3: Context injection and task assessment/completion.
The client agent performs a preliminary evaluation of the task
to determine whether it can be completed independently. If so,
it leverages the contextual information and tools integrated in
the previous step to execute the task. Otherwise, it generates
task metadata, including structured objectives, expected
outcomes, and required capabilities, as preparatory material
for a proposal.

Step 4: Task registration and proposal for DAO. If the
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task requires collaborative processing, the client agent
registers the task metadata on-chain and submits a proposal
through a smart contract to request cooperative support for
remote agents in the DAO.

Step 5: Member voting and task allocation. Upon
receiving the proposal, remote member agents volunteer for
collaboration and engage in decentralized voting, after which
the smart contract finalizes role assignments and resource
allocation based on the voting outcome.

Step 6: A2A discovery and task dispatching. The client
agent establishes a collaborative connection with the selected
remote agents via the A2A protocol and transmits the subtask
descriptions and contextual information in an encrypted
manner.

Step 7: Collaborative execution and contextualization.
Upon receiving the subtask, the remote agents follow the same
process as the client agent by performing steps 1, 2, and 3
to complete the task. Throughout the execution, they
synchronize the task status, intermediate results, and any
exceptions with the client agent in real time via the A2A
protocol.

Step 8: Result delivery and reasoning integration.
Remote agents deliver the final results to the client agent via
an encrypted channel, and the client agent analyzes and
consolidates these results to formulate a response.

Step 9: Log recording and incentive settlement. The
context and activity logs of the entire execution process are
recorded on the blockchain, and smart contracts distribute
rewards to each participating agent and update their on-chain
reputations. This marks the end of the task execution.

V. CHARACTERISTIC ANALYSIS

The design of the ARG emphasizes five core features:
parallelism and throughput, scalability across domains and
load, fault tolerance and graceful failure, resource efficiency
through delegation, as well as data security and privacy
protection, which collectively support the effectiveness and
flexibility of the agent in handling complex tasks.

(1) Parallelism and throughput: ARG supports task
distribution across multiple agents via the A2A protocol
and enables parallel execution through MCP. Achieving
significant speedups requires that the tasks themselves be
inherently parallelizable and that intelligent coordination
mechanisms are in place to manage inter-task dependencies
and integrate results, but coordination itself introduces
additional overhead.

(2) Scalability across domains and load: ARG enables
easier scalability by adding more agents or MCP servers.
However, real-world scalability depends not only on the
protocols themselves but also on factors such as discovery
service speed, network latency, coordination complexity, and
the performance of the underlying Al models. Additionally,
the interface between A2A and MCP can itself become a
performance bottleneck.

(3) Fault tolerance and graceful failure: From a
decentralized perspective, ARG offers potential for backup
options. Building a robust decentralized fault-tolerance
mechanism requires agents to reliably detect failures, evaluate

alternatives, and dynamically replan. This approach makes
agents far more complex than simple error-handling units,
endowing them with greater autonomy and coordination
capabilities to ensure high availability and robustness in a
system without centralized control.

(4) Resource efficiency through delegation: ARG
facilitates intelligent task allocation and coordination by
assessing task complexity and agent capabilities, while
utilizing encapsulated functions or off-the-shelf tools to
simplify tasks, thereby enabling efficient resource utilization
and effective task execution. This requires the prior collection
and efficient retrieval of tools and functions.

(5) Data security and privacy protection: ARG leverages
a blockchain-based DAO with smart contracts to ensure
transparent, fair, and immutable management of task
permissions, resource use, and rewards. All agent interactions
are recorded on-chain for traceability and auditability,
preventing tampering and data loss. It employs identity-based
and permission-based access controls to protect sensitive data
and supports privacy technologies like differential privacy and
homomorphic encryption, complying with privacy regulations
through blockchain’s transparent auditing. However, this
introduces increased computational and storage overhead,
which may impact the real-time responsiveness and scalability
of the system.

VI. CONCLUSION

This letter provides an in-depth analysis of the limitations of
LLMs, RAG, and Al agents. To overcome these limitations,
an ARG paradigm is proposed to achieve secure, efficient,
scalable, and autonomous collaborative task execution among
agents in complex open environments. In ARG, MCP, A2A
protocol, and DAO are applied to enable seamless integration
between LLMs and external tools, structured and secure
communication among agents, as well as decentralized
coordination and governance. We believe that ARG lays a
foundational pathway for the progression from artificial
intelligence to agentic intelligence, and holds strong potential
for enabling truly self-learning, self-organizing, self-evolving,
and context-aware intelligent systems with autonomous
intelligence.
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