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   Abstract—The  rise  of  foundation  models  has  brought
significant  advances  to  artificial  intelligence,  especially  in
reasoning,  commonsense  understanding,  and  tool  use.  These
capabilities,  when  integrated  into  agent  systems,  hold  great
promise  for  real-world  applications  such  as  vision-language
navigation  (VLN)  and  vision-language  action  (VLA).  However,
deploying  such  models  in  practice  presents  ongoing  challenges,
particularly in adapting and optimizing them across diverse and
changing  environments.  This  letter  proposes  a  parallel  deep
foundation  model  (PDFM)  framework  to  support  continuous
model  evolution  in  cloud-edge-device  systems.  The  framework
establishes  a  co-evolution  process  between  two  complementary
capabilities:  embodied  cognition,  which  reflects  the  model’s
grounded understanding and task adaptation in physical systems,
and  analogical  imagination,  which  enables  creative  exploration
and  capacity  expansion  in  virtual  environments.  Through  three
core processes, learning and training, experiment and evaluation,
and  management  and  control,  the  system  supports  iterative
refinement  and  dynamic  interaction  between  virtual  and  real
spaces.  This  enables  general-purpose  models  to  gradually
converge  toward  domain-specific  intelligence,  supporting  long-
term, adaptive deployment.
  

I.  Introduction

T  he  rapid  progress  of  large  foundation  models  has
provided  new  momentum  for  the  development  of
general  artificial  intelligence  (AI).  By  leveraging

advanced  capabilities  in  commonsense  understanding  and
reasoning,  these  models  enable  AI  systems  to  perform

memory-based  inference,  make  context-aware  decisions,  and
interact  with  external  tools.  Such  abilities  mark  a  significant
step  toward  mimicking  key  aspects  of  human  cognition  and
behavior,  and  lay  a  solid  groundwork  for  advancing  AI  into
more complex, embodied, and interactive environments.

Despite  their  impressive potential,  large foundation models
still face several critical challenges in real-world applications.
First, there remains a significant gap between general-purpose
capabilities  and  the  specialized  needs  of  specific  domains;
models  often  struggle  to  transfer  effectively  without  costly
fine-tuning  or  adaptation.  Second,  ensuring  continuous
optimization  throughout  the  model’s  lifecycle  is  difficult,
especially in changing environments where data distributions,
task requirements,  or  system constraints  may shift  over  time.
Third,  the  practical  deployment  of  large  models  remains  a
major  hurdle,  as  their  massive  parameter  sizes  and
computational  demands  pose  serious  limitations  for
integration into edge devices or resource-constrained systems.

To  address  the  challenges  of  deploying  foundation  models
in  real-world  applications  and  to  enable  their  long-term
optimization, this letter proposes the parallel deep foundation
model  (PDFM),  a  framework  that  integrates  cloud-edge-
device systems with the principles of parallel intelligence [1].
The architecture  centers  on two key components:  a  front-end
model  for  real-time  applications  and  a  shadow  model  for
continuous  improvement.  It  incorporates  a  unified  process  of
pretraining,  post-training,  and  deployment-stage  distillation.
Through  training-time  interaction  (at  the  levels  of  data,
features,  and  gradients)  and  inference-time  interaction
(enhanced  by  information  and  knowledge  fusion),  the  two
models  form  a  virtual-physical  collaborative  learning
mechanism.  This  mechanism  supports  the  adaptive
deployment and lifelong optimization of foundation models in
complex  and  evolving  environments,  combining  embodied
cognition,  real-time  learning  through  physical  interaction,
with analogical imagination, the ability to reason about novel
tasks by drawing on past experience and virtual simulation.

The main contributions of this letter are as follows:
(1)  We  propose  the  architecture  of  cloud-edge-end

intelligence,  abbreviated  as  Cloudedgend  Intelligence  that
integrates  cloud-edge-device  systems,  organizing  models
around  three  key  roles:  computation,  coordination,  and
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execution.  This  enables  adaptive  model  routing  and  flexible
task  allocation  based  on  scenario  requirements  and  task
complexity.

(2)  We  introduce  a  dual-model  design  that  decouples  real-
time application and long-term optimization by separating the
front-end model and the shadow model. This parallel structure
supports  the  full  lifecycle  of  model  training,  adaptation,  and
deployment.

(3)  We  develop  a  dual-channel  interaction  mechanism  for
parallel learning, involving inference-time interaction (at both
the  information  and  knowledge  levels)  and  training-time
interaction  (across  data,  features,  and  gradient  layers),
enabling continuous and efficient lifelong model optimization.

This  framework  provides  a  unified  solution  that  aligns
model architecture, continuous optimization, and deployment.
By  decoupling  real-time  execution  and  long-term  learning,
and enabling  interaction  across  training and inference  stages,
it  offers  a  scalable  approach  to  building  foundation  models
that  are  not  only  adaptable  and efficient,  but  also  deployable
across heterogeneous environments.  

II.  Related Work
  

A.  Foundation Model in Cloud-Edge System
Cloud-edge  systems  are  a  computing  architecture  aimed

at  real-time  deployment  response  requirements  through
deployment  at  the  network  edge.  Nowadays,  large  language
models  (LLMs)  have  been  widely  adopted  in  cloud-edge
systems  in  various  automated  scenarios  such  as  industrial
Internet  of  Things  (IoT),  intelligent  transportation,  and
telemedicine [2–9].  Transmitting  all  raw  data  back  to  the
cloud  for  processing  would  overwhelm  network  bandwidth,
while  delays  in  critical  commands  could  lead  to  safety
incidents.  To  address  this  challenge,  the  cloud-edge
computing paradigm has been proposed. Edge nodes typically
execute high-frequency, low-latency core tasks and equipment
status monitoring and transmit refined, high-value information
or  model  update  requests  to  the  cloud.  With  enormous
computing  power,  the  cloud  typically  handles  global
optimization scheduling,  long-term trend forecasting,  and the
training of advanced AI models,  and then deploys optimized,
lightweight versions of these models to the edge.

Collaboration  between  large  language  models  and  small
language  models  (SLMs)  is  a  key  technical  pathway  for
implementing  cloud-edge  intelligence,  since  it  could  address
the  conflict  between  the  powerful  capabilities  of  LLMs  and
the  resource  constraints  of  edge  deployment.  Chen  et  al. [6]
summarized  5  collaboration  modes  for  LLMs  and  SLMs,
including pipeline collaboration, hybrid/routing collaboration,
auxiliary/enhancement  collaboration,  knowledge  distillation
(KD)  driven  collaboration,  and  integration/fusion
collaboration.  Foundation  models,  pre-trained  on  massive
datasets  to  capture  general  patterns,  serve  as  more  robust
backbone  systems.  They  enable  efficient  development  of
downstream  AI  applications,  significantly  reducing  costs
and  resource  requirements.  For  the  cloud-based  models,
foundation  models  are  also  a  common  choice  for  their
emergent general capabilities [3, 8, 9].  

B.  Continuous Optimization of Foundation Model
The  continuous  optimization  of  foundation  models  has

evolved  through  three  distinct  yet  interconnected  paradigms:
supervised  fine-tuning  (SFT)  for  knowledge  injection,
reinforcement  learning  from  human  feedback  (RLHF)  for
alignment,  and test-time adaptation for  dynamic environment
interaction. This progression reflects the systematic efforts of
AI  community  to  bridge  the  gap  between  static  pretraining
and real-world deployment challenges.

The  foundational  work  on  SFT  established  parameter-
efficient adaptation as a cornerstone for model specialization.
Subsequent  innovations  like  token-based  scaling [10] and
fact-based  scaling  demonstrated  how  structured  data
generation enhances knowledge injection efficiency in LLMs,
particularly  for  time-sensitive  domains  like  sports  analytics.
However, the efficacy of SFT heavily depends on data quality,
prompting  solutions  like  RobustFT [11],  which  integrates
multi-expert  noise detection and entropy-based data selection
to mitigate label  noise.  The emergence of parameter-efficient
methods  (e.g.,  LoRA [12] and  prefix-tuning [13])  further
revolutionized  SFT  by  enabling  low-rank  adaptations  that
preserve  base  model  capabilities  while  reducing  catastrophic
forgetting.  These  developments  laid  the  groundwork  for
integrating SFT with reinforcement learning paradigms.

Q∗

While  SFT  excelled  at  knowledge  transfer,  its  inability  to
model  human  preferences  led  to  the  rise  of  RLHF
frameworks.  The  OpenRLHF  system [14] exemplifies  this
transition,  coordinating  four-model  architectures  for  scalable
preference learning. Theoretical breakthroughs like XPO [15]
redefined  exploration  strategies  through -approximation,
achieving  7.5% improvement  on  AlpacaEval-2  benchmarks.
However,  heterogeneous  human  feedback  introduced  new
challenges,  addressed  through  personalized  reward  modeling
[16] that  combines  representation  learning  with  mechanism
design for truthful preference aggregation. Crucially, Ref. [17]
revealed  the  suboptimality  of  sequential  SFT-RLHF training,
proposing joint optimization to prevent knowledge forgetting,
an insight bridging supervised and reinforcement paradigms.

The final  frontier  emerges in  dynamic environments  where
models  must  adapt  post-deployment.  Reference [18]
introduced  closed-loop  fine-tuning  for  traffic  simulation,
reducing  covariate  shift  through  trajectory-based
reinforcement.  Simultaneously,  packing  optimization [19]
demonstrated how intelligent sequence combination enhances
hardware  utilization  for  models  with  70  billion  or  more
parameters.  For  persistent  knowledge  updates,  Novel-WD
[13] pioneered  prefix-tuning  architectures  that  encode  new
Wikidata  facts  without  catastrophic  forgetting,  achieving
92.0% retention  on  temporal  reasoning  tasks.  These
innovations  converge  with  contrastive  meta-learning
approaches  that  maintain  differentiation  capacity  for  out-of-
distribution  samples,  completing  the  continuum  from  static
pretraining to embodied cognition.  

C.  Embodied Intelligence
The  vision-language  navigation  (VLN) [20] is  one  of  the

most popular embodied tasks which is designed to evaluate a
robot’s  ability  to  navigate  in  unknown  environments  by
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following  natural  language  instructions.  Humans  navigate
efficiently in familiar environments primarily by constructing
cognitive  maps  that  integrate  spatial  information  and  visual
cues such as  landmarks [21, 22].  Similar  to  human behavior,
robots perceive their surrounding environment through visual
inputs  (e.g.,  RGB-D)  and  move  within  novel  environments
based on linguistic  instructions.  Recent  studies [23, 24] have
demonstrated that leveraging foundation models [25], such as
LLMs  and  vision-language  models  (VLMs),  can  enhance
robot  navigation  performance  in  real-world  environments.
Specifically,  LLMs  can  parse  instructions  into  landmarks  or
executable  code,  capitalizing  on  their  powerful  language
understanding  capabilities,  while  VLMs  are  employed  to
process  complex  visual  observations  and  ground  the  parsed
linguistic instructions within the environment.

SayCan [26] demonstrated  how  LLMs  extract  and  apply
knowledge  to  accomplish  physically-grounded  tasks,
including simple navigation and object manipulation. In VLN
tasks, various approaches have attempted to employ LLMs as
zero-shot, training-free navigators. For instance, NavGPT [27]
pioneered  the  use  of  GPT-4  as  a  zero-shot  navigator,
converting  visual  observations  of  candidate  viewpoints  into
textual  descriptions  that  are  subsequently  processed  by  the
LLM to determine the next action. Similarly, DiscussNav [28]
introduced  a  specialized  role  division  framework:  ChatGPT
handles instruction analysis, InstructBLIP [29] provides visual
perception,  and  GPT-4  conducts  completion  assessment  and
decision  testing.  This  collaborative  framework  achieves  a
modular  and  interpretable  decision-making  process.  LLM-
based  methods  also  offer  the  additional  advantage  of
transparency.  Traditional  VLN models  are  typically  regarded
as “black  boxes”,  making  it  difficult  to  understand  the
reasoning  process  behind  an  agent’s  specific  action
predictions.  In  contrast,  LLMs  can  clearly  articulate  their
decision-making processes, providing researchers with deeper
insights  into  the  cognitive  processes  underlying  navigation
decisions.

Although  the  aforementioned  approaches  have
demonstrated  the  feasibility  of  employing  large  language
models  as  navigators,  they  still  face  numerous  challenges  in
practical  applications.  Methods  such  as  NavGPT  and
DiscussNav  heavily  rely  on  application  programming
interface (API) calls to advanced models like GPT-4, resulting
in  substantial  operational  costs.  Meanwhile,  using  locally
deployed  large  models  demands  high  computational
requirements from devices, imposing greater demands on edge
devices and increasing equipment costs.  

III.  Parallel Deep Foundation Model
  

A.  Cloudedgend Intelligence
To  support  the  deployment,  adaptation,  and  lifelong

optimization of  foundation models  in  real-world  systems,  we
propose a structured architecture of Cloudedgend Intelligence.
This  architecture  distributes  models  across  three  tiers,  cloud,
edge,  and  end,  each  fulfilling  a  distinct  functional  role:
computation,  coordination,  and  execution.  By  leveraging  the
complementary  strengths  of  each  layer,  the  system  enables
hybrid and adaptive intelligence.

Cloud system: Cloud systems focus on computation-centric
tasks.  They  host  resource-intensive  models  and  form  the
backbone  for  large-scale  processing  and  intensive  training.
This  layer  includes  infrastructure  models  that  enable
distributed  computation,  data  management,  and  secure
communication;  foundation  models  that  provide  general-
purpose  capabilities  in  understanding,  reasoning,  and
generation;  and  field  models  that  are  developed  to  meet  the
specialized  needs  of  specific  domains  or  industries.
Collectively,  these  models  supply  the  core  knowledge  and
computing power necessary for downstream applications.

Edge  system: Edge  systems  act  as  the  coordination  layer,
managing  knowledge,  resources,  and  processes  across
distributed  environments.  Organization  models  structure  and
integrate  diverse  resources,  including  knowledge  bases,  tool
repositories,  and  service  APIs,  to  support  composable and
modular  intelligence.  Coordination  models  handle
collaboration,  task  assignment,  conflict  resolution,  and
incentive mechanisms, drawing inspiration from economic or
organizational  systems.  Operation  models  manage  and
execute  context-specific  workflows,  translating  abstract  tasks
into  actionable  processes.  Through  these  models,  edge
systems enable intelligent orchestration between the cloud and
end layers.

End  system: End  systems  provide  execution-centric
capacities  at  the  frontlines  of  interaction  with  the  physical
world.  Deployed  on  terminal  devices,  robots,  or  embedded
systems,  they  operate  under  real-time  constraints  and  limited
resources.  Interaction  models  support  multimodal,  real-time
communication  between  humans  and  machines,  as  well  as
machine-to-machine  communication.  Optimization  models
capture  feedback  from  users  and  the  environment  to  support
continuous  learning  and  local  adaptation.  Execution  models
are  responsible  for  enacting  concrete  actions  with  high
efficiency and responsiveness in diverse scenarios.

These  three  layers  operate  in  a  tightly  coupled  and
feedback-driven  manner.  Systems  closer  to  the  cloud
emphasize intensive computation and model refinement, while
systems near the edge and end focus on real-time perception,
interaction,  and  task  execution.  When  edge  or  end  devices
encounter complex, uncertain, or novel scenarios beyond their
capacity, relevant data and context are transmitted back to the
cloud for analysis and model enhancement. Cloud-side models
then  store  these  experiences  and  periodically  perform
retraining  or  adaptation,  propagating  the  updated  capabilities
back to the edge and end layers to close the loop of continuous
improvement.  

B.  Interaction of Front-End Model and Shadow Model
To  achieve  both  real-time  applicability  and  long-term

optimization  of  foundation  models,  we  introduce  a  parallel
framework  composed  of  front-end  models  and  shadow
models.  These  two  models  are  structurally  and  functionally
decoupled,  yet  closely  linked  through  bidirectional
interactions  across  both  training  and  inference  stages.  This
design embodies the principles of parallel intelligence, where
the front-end model operates in the physical world, while the
shadow  model  functions  in  a  virtual  space  to  explore  and
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generalize.  This  collaboration  is  structured  around  three  core
processes  inspired  by  parallel  intelligence [1]:  learning  and
training,  experimental  evaluation,  and  management  and
control. In the learning phase, large-scale data from both real
and simulated environments are used to build robust general-
purpose  models.  During  experimental  evaluation,  domain-
specific  tasks  are  tested  and  refined  in  artificial  societies  to
support  specialization.  Finally,  in  the  control  phase,
deployment-focused  optimization  techniques  are  applied  to
ensure  that  models  meet  practical  constraints  across
heterogeneous systems.

Front-end  models  are  mainly  deployed  at  the  edge  or  end
layer  to  handle  real-time  perception,  interaction,  and  task
execution.  They  are  optimized  for  low-latency  inference  and
situational awareness, enabling effective responses in dynamic
and  resource-constrained  environments.  Due  to  their  direct
engagement  with  physical  systems  and  users,  front-end
models  exhibit  embodied  cognition,  a  form  of  intelligence
grounded  in  sensory-motor  interaction  with  the  physical
world. Much like how a robot uses its sensors (e.g., cameras,
LiDAR,  and  tactile  input)  to  perceive  its  surroundings  and
adapt its behavior accordingly, embodied cognition allows AI
systems  to  develop  contextual  understanding  through
continuous perception-action loops and real-time feedback.

In contrast, shadow models reside in the cloud and focus on
analogical  imagination  and  long-term  learning.  Built  upon
foundation  models,  they  are  continually  enriched  by  data,
episodic  experiences,  and  performance  feedback  collected
from  deployed  front-end  models.  Analogical  imagination
refers  to  the  ability  to  reason  about  novel  or  uncertain
situations  by  drawing  parallels  from  past  experience  and
prediction.  Just  as  humans  imagine  new  solutions  by
reconfiguring  familiar  knowledge,  shadow  models  simulate
virtual  scenarios,  explore  counterfactuals,  and abstract  across
domains  to  generate  novel  strategies,  concepts,  or
configurations beyond the reach of the front-end alone.

Two types of interactions connect the front-end and shadow
models:  inference-time  interaction  and  training-time
interaction.  These  interactions  form  the  foundation  of  a
virtual-physical  co-evolution  mechanism,  enabling  real-time
adaptability and long-term learning.

●  Inference-time  interaction: Inference-time  interaction
focuses on enhancing the model’s input and reasoning process
through  both  information-based  and  knowledge-based
augmentation. Information-based interaction is exemplified by
retrieval-augmented  generation  (RAG),  where  the  front-end
model  formulates  queries  that  are  sent  to  the  shadow model.
The  shadow  model  conducts  large-scale  retrieval  and
aggregation  from  structured  databases  or  online  sources,
returning  relevant  information  to  improve  the  front-end
model’s inference. Knowledge-based interaction, on the other
hand,  leverages  techniques  such  as  mixture-of-experts
(MoEs).  The shadow model  hosts  a  large pool  of  specialized
experts  and  dynamically  routes  queries  to  the  most  relevant
subsets  based  on  the  front-end  task.  This  targeted  expert
activation  allows  the  front-end  model  to  benefit  from  rich,
domain-specific  knowledge  without  incurring  high  local
computational cost.

●  Training-time  interaction: Training-time  interaction
supports  model  enhancement  and  continual  optimization
across  three  levels:  data,  feature,  and  gradient.  Data-level
interaction  identifies  hard  or  uncertain  scenarios  encountered
by the front-end model and uses the generative capabilities of
the  shadow  model  to  synthesize  targeted  examples,  i.e.,
artificial  intelligence  generated  content  (AIGC).  These
challenging  samples  are  then  used  to  fine-tune  the  front-end
model,  strengthening  its  robustness.  Feature-level  interaction
applies  knowledge  distillation  techniques  to  transfer
intermediate  representations,  such  as  reasoning  chains  or
hidden  features,  from  the  shadow  model  to  the  front-end
model,  enriching its internal structure and inference capacity.
Gradient-level  interaction  treats  the  shadow  model  as  a
supervisor:  it  evaluates  the  front-end  model’s  outputs  and
provides  feedback  in  the  form  of  language-guided  gradients,
guiding the front-end model’s update process even in settings
where direct backpropagation is infeasible.

Together,  these  dual-channel  interactions  enable  a  tightly
coupled  loop  between  real-world  embodiment  and  virtual
abstraction.  The  front-end  model  is  continually  refined  with
targeted  support  from  the  shadow  model,  while  the  shadow
model evolves through aggregated experiences from the field.
This  co-evolution  supports  scalable  deployment  and  lifelong
optimization  of  large  foundation  models  across  diverse
applications.  

C.  Lifelong Learning in Parallel Mode
To  enable  continuous  optimization  and  adaptation  of

foundation  models  in  dynamic  environments,  we  adopt  the
parallel  intelligence  framework,  grounded  in  the  ACP
methodology:  artificial  societies,  computational  experiments,
and parallel  execution.  This  paradigm integrates  three  tightly
coupled processes: learning and training, experimentation and
evaluation,  and  management  and  control.  Through  iterative
interaction  between  physical  and  virtual  systems,  models  are
developed,  tested,  and  deployed  in  a  closed  loop,  supporting
scalable  and  sustainable  intelligence.  Within  this  framework,
lifelong learning proceeds in three interconnected stages, each
aligned with one phase of the ACP cycle.

The  first  stage  is  the  general-purpose  pre-training  phase,
corresponding  to  the  learning  and  training  process.  In  this
stage,  foundation  models  are  trained  on  massive  datasets
generated  from  both  real-world  environments  and  high-
fidelity virtual simulations. These diverse corpora provide rich
knowledge  for  building  commonsense  reasoning  and  general
understanding. Virtual  environments enable the simulation of
rare  or  complex  scenarios  that  are  difficult  to  capture  in
physical settings.

The  second  stage  is  the  domain-specific  fine-tuning  phase,
corresponding  to  experimentation  and  evaluation.  Here,
pretrained  models  are  adapted  to  specialized  tasks  and
domains  by  analyzing  their  performance  in  representative
scenarios.  Artificial  societies  provide  a  testbed  for  running
controlled  experiments,  allowing  the  model  to  be  selectively
refined for domain-specific needs.

The third stage is the application-oriented post-tuning phase,
corresponding to management and control. This stage focuses
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on  practical  deployment  requirements.  Techniques  such  as
distillation, pruning, and quantization are applied to compress
models  into  lightweight,  deployable  versions.  These
optimizations  ensure  that  the  model  meets  real-time
constraints  in latency,  power,  and compute resources without
sacrificing reliability.

By structuring lifelong learning in parallel mode, foundation
models  evolve  across  generalization,  specialization,  and
deployment  stages.  This  approach  ensures  continuous
adaptation  and  enables  intelligent  systems  to  operate
effectively in diverse and changing real-world environments.  

IV.  Application
  

A.  Foundation Low-Altitude System
In wide-area perception and multi-task scheduling scenarios

involving low-altitude unmanned aerial vehicles (UAVs) [30],
traditional  LLM-based  embodied  UAV  systems  still  face
significant  bottlenecks  in  real-time  responsiveness,
environmental  adaptability,  and  task  generalization.  To
address these challenges, as shown in Fig. 1, we introduce the
PDFM architecture  into an integrated “cloud-edge-end-aerial”
low-altitude  system,  constructing  a  foundational  intelligent
framework that integrates perception, cognition, and control to
support continuous operation and intelligent evolution in low-
altitude environments.

As shown in Fig. 2, the front-end model is deployed on the
UAV (edge-end) platform, which is responsible for executing
high-frequency  tasks  such  as  VLN,  target  search,  dynamic
tracking,  and  multi-agent  cooperative  response,  with  an

emphasis  on  real-time  performance  and  environmental
adaptability.  Meanwhile,  the  shadow  model  resides  in  the
cloud,  continuously  absorbing  data,  logs,  and  task  feedback
from  UAVs  to  perform  high-dimensional  scene  modeling,
causal  structure  extraction,  and  knowledge  transfer  learning,
enabling virtual evolution and strategy reconstruction for low-
altitude tasks.

During the execution phase, the system relies on inference-
time  interaction  mechanisms,  leveraging  techniques  such  as
RAG  and  MoE  to  provide  UAVs  with  instant  contextual
information  and  cross-domain  knowledge  support,  enhancing
task  decision-making  in  emergencies  and  unfamiliar  areas.
During  task  intervals,  the  system  activates  training-time
interaction  mechanisms,  with  the  shadow  model  leading  the
generation  of  complex  examples,  flight  path  optimization,
and  structural  distillation,  thereby  promoting  continuous
optimization  and  generalization  of  the  front-end  model.  This
enables a cyber-physical closed loop from local task execution
to  cloud-based  knowledge  evolution,  advancing  the
perception-cognition-action  capabilities  of  low-altitude  UAV
systems  along  a  trajectory  that  mimics  a  humanoid-like
evolution.  

B.  VLN with Foundation Robot
Existing  VLN  systems  face  two  primary  challenges:  (1)  a

lack  of  environmental  modeling  capabilities,  which  hinders
effective  understanding  and  adaptation  to  complex,  dynamic
environments;  (2)  insufficient  long-term  reasoning  abilities,
limiting  performance  in  extended  tasks.  To  address  these
issues,  we  propose  an  integration  of  world  model-driven
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Figure 1 Framework of the proposed PDFM method.
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continuous  learning  to  enhance  the  environmental
understanding  and  decision-making  capabilities  of  VLN
systems, as shown in Fig. 3.

Dynamic  prediction  with  cloud-based  world  model. By
leveraging  the  representational  learning  capabilities  of  large-
scale foundational models combined with temporal modeling,
we construct a world model capable of understanding physical
laws, spatial relationships, and causal logic. This world model
takes  current  observations  and  trajectory  as  inputs  to  output
probabilistic  predictions  of  future  environmental  states,
providing  a  forward-looking  foundation  for  navigation
decisions.  Through  this  approach,  the  system  can  perform
counterfactual  reasoning  and  hypothesis  verification,
enhancing its ability to adapt to environmental changes.

End-side  self-supervised  continuous  learning. Utilizing
the  dynamic  predictions  provided  by  the  cloud-based  world
model,  end-side  devices  can  engage  in  self-supervised
continuous  learning.  This  mechanism  allows  the  system  to
continuously  optimize  and  refine  its  environmental  model
during navigation. Specifically, by comparing predicted states
with  actual  observations,  the  system  can  identify  areas  of
uncertainty  within  the  model  and  conduct  targeted
exploration.  This  exploration  not  only  helps  improve  the
system’s understanding of the environment but also enhances
model  accuracy  and  reliability  without  compromising
navigation  efficiency.  Through  ongoing  learning  and
improvement,  edge  devices  can  better  adapt  to  complex  and
changing  environments,  ensuring  the  successful  execution  of
navigation tasks.  

C.  Vision Language Action (VLA) with Foundation Robot
The  widespread  application  of  existing  VLA  models  is

limited by two key factors: (1) the lack of generality in current
VLA models, which hinders their ability to be transferred and
deployed in various applications; (2) the current VLA models
cannot  be  easily  deployed  on  robotic  terminals,  as  they  still
require  significant  computational  power.  Therefore,  we
propose  the  development  of  a  universal  cloud-edge-end
collaborative  VLA  framework  based  on  a  parallel
foundational  model  structure  to  address  the  issues  of
compatibility and computational demands for terminal robots.

Cross-platform  general  representation  learning.
Traditional  VLA  models  typically  output  low-level  control
commands  (such  as  joint  angles  or  end-effector  poses),
resulting  in  strong  coupling  with  the  kinematics  of  specific
robots.  To  enhance  cross-platform  generality,  we  propose  a
task-level  action  abstraction  method,  decomposing  robotic
actions  into  high-level  semantic  instructions  (such  as “grab
object  A”)  and  platform-independent  motion  primitives.
Specifically,  the  cloud-based  VLA model  generates  semantic
actions  that  are  independent  of  the  robot’s  configuration,
while  the  edge  device  uses  a  lightweight  adapter  network  to
transform  these  abstract  instructions  into  low-level  control
signals for the target robot in real-time. This adapter network
employs  a  dynamically  reconfigurable  architecture  that
automatically  adjusts  parameters  based  on  the  kinematic
characteristics  of  different  robots,  enabling  zero-shot  transfer
of the same model across various robots.

Dynamic  computation  offloading  and  lightweight
deployment. To  achieve  real-time  inference  on  terminal
devices,  this  framework  adopts  a  stratified  computation
offloading  strategy.  The  cloud  hosts  a  high-performance
VLA  foundational  model  responsible  for  complex  scene
understanding  and  task  planning,  while  the  end-side  device
runs  a  lightweight  student  model  focused on generating  real-
time  control  commands.  The  two  models  dynamically
collaborate  through  the  cooperation  of  edge-side:  when  the
end  model  encounters  unfamiliar  scenarios  (such  as  new
objects  or  complex  instructions),  the  edge-side  model
automatically  triggers  the  involvement  of  the  cloud model  to
ensure the reliability of task execution.  

V.  Conclusion

This  letter  presents  the  parallel  deep  foundation  model,  a
framework  designed  to  support  the  scalable  deployment  and
continuous  optimization  of  foundation  models  in  real-world
intelligent  systems.  By  integrating  cloud-edge-end
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architecture  with  parallel  intelligence  principles,  the  PDFM
framework  enables  a  functional  division  of  computation,
coordination,  and  execution  across  system  layers.  The  dual-
model  design,  featuring  a  front-end  model  for  real-time
interaction  and  a  shadow  model  for  long-term  improvement,
establishes  a  virtual-real  co-evolution  mechanism  through
both  inference-time  and  training-time  interactions.
Furthermore, a lifelong learning paradigm is established based
on  the  ACP  methodology,  aligning  general-purpose  pre-
training, domain-specific fine-tuning, and application-oriented
post-tuning into a coherent process. This architecture offers a
promising  foundation  for  building  adaptive,  embodied,  and
continuously  evolving  intelligent  agents  in  complex
environments.  
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