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Asymptotically Stable Controller Design via

Inverse Optimal Control

Shuhuai Tan, Kexi Yan, Jie Zhang, Yongting Chen, Qinglai Wei, and Fei-Yue Wang

Abstract—The design of stabilizing controllers for general
nonlinear systems remains a challenging task due to their
inherent complexities and nonconvexities. In this paper, we
consider the problem of designing an asymptotically stable
controller of a nonlinear dynamic system. We begin by framing
the problem as an inverse optimal control problem, aiming to
design a pair of cost functions that ensure asymptotic stability for
the nonlinear model predictive control closed-loop system. By
leveraging the relaxed dynamic programming inequality, a
machine learning based algorithm is proposed to learn the cost
functions. Finally, we demonstrate the effectiveness of the
proposed method through illustrative examples.

I. INTRODUCTION

hroughout the history of control science and

engineering, system stability has always been a central

research focus. Traditional analytical frameworks
represented by Lyapunov stability theory have provided
rigorous mathematical foundations for the long-term
reliability and convergence of system dynamic behaviors. The
Lyapunov function is a crucial tool within this framework [1].
It serves to analyze and prove the stability of dynamic
systems, particularly in nonlinear and time-varying systems.
The Lyapunov method offers an analysis approach
independent of specific system solutions. However,
fundamental challenges persist. Determining the existence of a
Lyapunov function for a given system and constructing such
functions remain open problems, with no universal solution
method established to date. Recently, in Ref. [2], Meta’s
artificial intelligence (AI) team proposes a new machine
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learning based method wusing sequence-to-sequence
Transformers [3] to discover global Lyapunov functions.
However, this method requires known Lyapunov functions as
training data and can only discover global Lyapunov
functions. Some other methods also use machine learning
based methods to discover Lyapunov functions [4, 5].

Starting from the 1950s, optimal control problems received
widespread attention and gradually matured. Solving infinite-
horizon optimal control problems provides a way to construct
Lyapunov functions, as well as a method to design
asymptotically stable controllers [6]. Optimal control
problems typically aim to optimize a specific performance
metric, solving for control inputs through the mathematical
theoretical foundations of the Pontryagin’s minimum principle
[7] and dynamic programming (DP) [8—10].

With the continuous increase in the complexity of dynamic
systems, traditional optimal control methods face new
challenges. On the one hand, high-dimensional state spaces
lead to an exponential increase in computational complexity,
which is known as the “curse of dimensionality”. On the other
hand, dynamic systems often exhibit complex characteristics
such that accurate mathematical modeling presents inherent
difficulties. A series of data-driven intelligent methods are
proposed to handle these challenges. Among these,
reinforcement learning (RL) [11] and adaptive dynamic
programming (ADP) [12] are methods that can approximately
solve optimal control problems with unknown system
dynamics in a forward-in-time manner, thereby avoiding the
“curse of dimensionality” problem to some extent. However,
these methods typically require a well-designed reward
function to guide the learning process, which is often difficult
to obtain in practice.

Inverse optimal control (IOC) [13], also known as inverse
reinforcement learning (IRL) [14], which can be traced back
to Ref. [15], is a control approach used when the reward
function or cost function of the system is unknown or partially
unknown. Contrary to forward optimal control, IOC methods
aim to infer the unknown reward function of the dynamic
system in a Markov decision process from expert
demonstrations of the optimal policy. IOC currently has
applied research in multiple fields, including autonomous
driving [16, 17], human-robot collaboration [18], multi-agent
system control [19], and anomaly detection [20].

Optimal control requires the value function to satisfy the
dynamic programming equality (optimality), whereas
asymptotic stability control only requires the value function to
satisfy the relaxed dynamic programming (RDP) inequality
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(sub-optimality), which is generally a more lenient condition
[21-23]. This fact inspires us to use the IOC method to design
cost functions that satisfy the relaxed dynamic programming
inequality, which then ensures the asymptotic stability of the
closed-loop system.

In this paper, we propose a method to design an
asymptotically stable controller via inverse optimal control.
Our method first uses the idea of inverse optimal control to
infer the cost function of the system, then leverages the cost
function to attain an asymptotically stable controller. The
contributions of the method can be listed as follows:

(1) As far as we know, this is the first time that inverse
optimal control is used to design an asymptotically stable
controller.

(2) Compared to typical IOC methods and Meta AI’s
sequence-to-sequence Transformers method, our method does
not require optimal trajectories or expert demonstrations.

Notation Let Ny be the set of non-negative integers, that
is Ng={0,1,2,...}. Let R"” be the n-dimensional Euclidean
space, Rj = [0,+c0) be the set of non-negative real numbers.

II. INVERSE ASYMPTOTIC STABILITY PROBLEM

A. DP and RDP
Consider the discrete-time deterministic system

Xert = f (X, ) )]
where ke Ny, f(,-) :R"XR" > R”" is the system dynamics,
which is possibly nonlinear, x; € R” is the state variable, and
ux € R™ is the control input.

Dynamic programming is a classic tool for solving optimal
control problems. Let X CR" and U CR™ be the state space
and control input space, respectively. The DP principle states
that the optimal value function V(n,xg) satisfies the Bellman
equation

V(n,xo)= H}lin{/l(m,u(n, x0)+V(n+1, f(xo,u(n, x0))}  (2)

where neNy, u:NogxXm— U is a feedback control law,
1:XxUm R(J; is a stage cost function, and x¢ is the initial
state. The feedback control law obtained from the Bellman
equation by solving the infinite-horizon optimal control
problem also stabilizes the closed-loop system. Thus, solving
infinite-horizon optimal control problems using dynamic
programming provides a way to construct Lyapunov functions
and design asymptotically stable controllers [6], if A is given.
Compared with DP, the relaxed dynamic programming is
considered a more lenient condition than the Bellman equation

V(n,x0) > ad(xo,u(n, x0)) + V(n+ 1, f(xo,u(n,x0)))  (3)

where neNy, u:NogxXm— U is a feedback control law,
V:NoxX R} is the corresponding value function of u,
and A:XxUm R is a stage cost. Let Xo be a forward
invariant set of the closed-loop system and desired
equilibrium x.f € Xg C X. If the RDP inequality in Formula
(3) is satisfied for some a € (0,1] and all xyp in Xy and all
n € Ny, the closed-loop system is asymptotically stable on
Xo [6].

B. Inverse RDP Approach

The DP principle enables the synthesis of asymptotically
stable controllers by solving infinite-horizon optimal control
problems, but a well-designed cost function is required.
Traditional inverse optimal control methods provide a way to
infer the cost function, yet they typically rely on access to
optimal trajectories or expert demonstrations. In this work, we
propose a novel approach to construct asymptotically stable
controllers from scratch, leveraging the RDP in conjunction
with inverse optimal control to infer suitable cost functions,
without requiring predefined cost or expert-generated
trajectories.

By inverting RDP, we derive sufficient conditions on the
cost functions that guarantee the asymptotic stability of a
given closed-loop system. Let the equilibrium point Xpef
belong to a target set Xo € X, and denote the corresponding
N-step feasible set of X as X . Suppose that we find a stage
cost function 1:XXU R and a terminal cost function
F:X—R] such that, for all xe€Xy, the following RDP
inequality is satisfied

Vn(n+ L f(x,pun(n, )+ pun(n, x)) = Vv (n,x) <0 (4)

and for all x € Xy, the terminal Lyapunov inequality holds

F(f(x,un(n, x))) + Ax, pun(n, %)) = F(x) <O ®)

where the value function Vy(n,x) and feedback control law
un(n,x) are obtained by solving the associated finite-horizon
optimal control problem with cost functions A and F, then the
closed-loop system is asymptotically stable on Xy .

Given any candidate cost functions, finite-horizon optimal
control problems are solved to generate a collection of
demonstration trajectories. The extent to which these
trajectories violate Formulas (4) and (5) provides a
quantitative basis for evaluating and refining the cost
functions. We denote the parameterized cost functions as
Ag, (x,u;01) and Fy,(x;6,), where 0; and 6, are the parameter
vectors of the functions. The design of these functions can
then be posed as the following optimization problem

min L(Ag,, Fe,) (6)
01,62

where L(Ag,,Fg,) is a stability metric that measures the extent
of violation of the RDP, ie., L(dy,,Fg,) =0 if and only if
Formulas (4) and (5) hold for all the demonstration
trajectories, otherwise we have L(dg,, Fy,) > 0.

To solve the optimization problem of Eq. (6), we use
nonlinear model predictive control (NMPC) to solve a
receding horizon optimal control problem to obtain the NMPC
value function Vy(n,x), NMPC feedback control law uy(n, x),
and state trajectories as demonstrations, and then the stability
metric L(Ag,,Fg,) is computed based on the demonstrations.
Then, we use gradient descent to update the cost function
parameters 6; and 6, according to the stability metric
L(Ag,,Fs,).

III. ILLUSTRATIVE EXAMPLE

To facilitate a deeper understanding of the proposed
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method, this section first provides a linear quadratic system as
an illustrative example to demonstrate the key differences
between our algorithm and the traditional optimal control
methods. Then, a CartPole nonlinear system is used to
validate the effectiveness of the algorithm.

A. Linear Quadratic System
Give a linear quadratic system

Xial = Xg + Uy @)
N-1

Iy =Fxy+ > (0x; +Ru) (8)
k=0

where x,u€eR, F, Q, R€[0,+), and x=0 1is the
equilibrium point. The objective is to design the cost functions
such that the optimal control stabilizes the system.

Two cases are considered in this example. The first case
assumes that the stage cost parameters Q and R are known,
and we need to infer the terminal cost parameter F. The
second case only assumes that the stage cost R is known, and
we need to infer both Q and F.

NMPC with terminal cost F is often referred to as quasi-
infinite horizon NMPC. The reason is that when terminal cost
function F(-) is an approximation of the infinite-horizon value
function, the finite horizon dynamic programming principle
is an approximation of the infinite-horizon dynamic
programming principle. Consequently, the NMPC actually
solves an approximate infinite-horizon optimal control
problem at each time step [6].

For this system, if we consider the infinite-horizon optimal
control, the objective function becomes

Joo = Z Qxi +Ru,% €
k=0

Solving the Bellman equation allows us to directly compute
the optimal value function V. (x) = Kx?. The corresponding
infinite-horizon optimal control law stabilizes the system. In
fact, this is also what reinforcement learning is focused on: to
approximately solve the Bellman equation, estimate the
optimal value function, and thereby obtain the optimal control
law, which is also an asymptotically stable control law.

A value function that fulfills the Bellman equation also
satisfies the RDP inequality (with a=1) and achieves
equality. Considering the relationship between F and K, for
fixed Q and R and a small NMPC horizon N, the stability
metric L(Ag,,Fy,) is expected to be close to 0 when the
terminal cost parameter F is close to K. However, the
Bellman equation is only a special case of the RDP inequality.
RDP inequality being satisfied does not strictly require F to
approximate K, and this highlights the difference between our
algorithm and general optimal control methods like ADP or
RL.

One of the objectives of the experiment is to validate the
above discussion. The stability metric only includes RDP
inequality in Formula (4), as it is easy to prove that the
resulting terminal cost F must be a Lyapunov function for
linear quadratic problems. We use the penalty function

P(z) = max(0,(z—¢€))> to transform the RDP inequality into
the stability metric, where € is a small positive number.
a. Inferring F with Known Q and R

In this case, running cost parameters are fixed. NMPC
prediction horizon is set to N =1. The initial state xp is
sampled from [-1000, 1000] uniformly, and M = 128 samples
are drawn for each epoch.

Given Q=1 and R =1, the infinite horizon optimal value
function can be computed by solving the Bellman equation,
and the resulting optimal value function is Ve,(x) = 1.61803x2.
Choose F =1.5 as the initial value of the terminal cost
parameter. The loss curve is shown in Fig. 1(a) and the change
of the terminal cost parameter F is shown in Fig. 1(b). It can
be observed that the loss converges to a small value, and the
terminal cost parameter F converges to 1.6180.

This convergence is consistent with the expectation that the
terminal cost F approaches the optimal value function K,
which indicates that after updating the terminal cost parameter
F using the proposed algorithm, the resulting NMPC value
function V(n,x) can be regarded as an approximation of the
infinite-horizon value function V. (x). So, NMPC value
function V| (n,x) satisfies the Bellman equation globally, thus
the RDP inequality also holds, which implies that the closed-
loop system is asymptotically stable globally.

We also run the experiments with different Q values. For
each Q, K is computed by solving the Bellman equation, and
the initial value of F is set to a value that is less than K. The
results are shown in Table 1, where the second column is the
initial value of F, the third column is the converged value of
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Figure 1 Control results of the linear quadratic system with known Q and R.
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F after iteratively updating, and the fourth column is the
expected value of K. The results in Table 1 show that the
terminal cost parameter F' does converge to K as expected.

Table 1 Results under different Q values.

1] Initial Converged F Expected K
0.5 0.9 1.0000 1.000,000,00
0.8 1.2 1.3798 1.379,795,91
1.0 1.4 1.6180 1.618,033,99
1.2 1.6 1.8490 1.848,999,65
1.6 2.0 2.2967 2.296,662,98
2.0 2.4 2.7320 2.732,050,81

The following part focuses on other values of F that also
make the RDP inequality hold. Considering the objective
function of J; = F(x+u)*>+ Qx> +Ru®, taking the partial
derivative with respect to u, and setting it to zero, we can
obtain the optimal control law u* = —Fx/(F + 1). Substituting
u* into the objective function, the optimal value function can
be obtained, and then substituting both u* and the optimal
value function into the RDP inequality, we have

Vitn+1, fOo,u™)) + Ax,u™) = Vi(n,x) <0 (10)

Eliminating x in Formula (10) leads to F3>-2F—13>0,
which has the solution of F > 1.6180 (the negative roots are
discarded). This indicates that as long as the terminal cost F is
greater than or equal to 1.6180, the RDP inequality holds, and
the closed-loop system is asymptotically stable globally.
When F > 1.6180, the stability metric is always zero, thus the
terminal cost parameter F will not be updated by the
algorithm. We verified this by running a series of experiments
with different initial values of F > 1.6180.
b. Inferring Q and F with Known R

In this case, we fix R =1 and update both Q and F. The
NMPC prediction horizon is set to N = 1. Specify the initial
value of F to be 1.5 and the initial value of Q to be 2.5. The
loss curve is shown in Fig. 2(a) and the change of the cost
parameters Q and F is shown in Fig. 2(b). The value of Q
converges to 1.5510, and the value of F converges to 2.2426.
Fixing 0 =1.5510 and R=1, the infinite horizon optimal
value function can be computed by solving the Bellman
equation, and the result is Vi, (x) = 2.2426x>. Solving the RDP
inequality in Formula (10) analytically with Q =1.5510
results in F > 2.24260608. These results are again consistent
with the expectation.

B. Nonlinear CartPole System

Consider a nonlinear CartPole system with the following
model parameters: cart mass M =1 kg, pendulum mass
m=0.1 kg, pendulum length L=0.5 m, and gravitational
acceleration g =9.8m/s>. The system state is denoted as
[x,%,cos,sinf,0] € R>, with each dimension representing
displacement, velocity, cosine of the pendulum angle, sine of
the pendulum angle, and pendulum angular velocity,
respectively. The control input is u € R. When the CartPole
system stabilizes at the upright position, the system state

1.4
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Figure 2 Control results of the linear quadratic system with known R.

becomes xer = [0,0, 1,0,0], which is an equilibrium point. We
set this point as the desired equilibrium for the NMPC. The
optimal control objective function is given by

J = (X = Xref) T F (XN — Xef)+
N-1

T T
Z (X% — Xrer) Q(Xk — Xret) + Uy Ruy,
k=0

(11)

where F and Q are parameter matrices to be learned, and R is
a known parameter.

In the experiment, R is fixed to 0.01. The parameter matrix
Qg, for the running cost is initialized as an identity matrix
(Qo=1) and remains diagonal during subsequent updates
(only the diagonal elements are treated as parameters to be
learned). The parameter matrix Fg, for the terminal cost is
randomly initialized using a normal distribution. To ensure the
positive definiteness of the parameter matrices, the practical
running cost is le Op, and the terminal cost is ¥/ ng 9,. The
initial parameter for the terminal cost function is

5.8778  3.1375 4.8410 -3.5438 4.3548
3.1375  4.1936 17407 -4.2103 1.4381
Fo=|4.8410 17407 54636 —1.3833 5.8233 |.
-3.5438 -4.2103 -1.3833 5.7621 -2.1388
43548 1.4381  5.8233 -2.1388 9.1122

The performance metric in the experiment consists of the
RDP inequality term, the terminal Lyapunov inequality term,
and the parameter regularization term. We use a quadratic
function P(z) =z as the penalty function to convert the
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inequalities into the stability metric. To prevent Q and F from
being too small, we regularize the summation of the
parameters to a fixed value using the following regularization
term

BK =" abs(6;))? (12)

where 6; are diagonal elements of Q and all elements of F, K
is a constant, and B is a hyperparameter. We set K =5 and
K =25 for Q and F, respectively. To balance the influence of
these three terms on parameter learning, we multiply the
terminal Lyapunov inequality term by 100 and let 8 = 0.001.

The initial angle of the pendulum is sampled from
[-7/6,m/6] uniformly. The angle range of the target state is
set to [-1/60,7/60], and only when the angle is within this
range, the terminal Lyapunov inequality term is activated.

The NMPC prediction horizon is set to N =32 and the
batch size is set to M = 64. The CartPole environment and the
optimal control solver are from Ref. [24]. To better handle
objective functions in Bolza form, some modifications are
made to the solver.

The training loss curve of the total stability metric and each
term is shown in Fig. 3. It is observed that except for the
Lyapunov inequality loss, the other terms quickly converged.
However, it can be noted that the Lyapunov inequality loss
has consistently remained very close to zero. Therefore, it is
believed that the terminal cost function has consistently acted
as a Lyapunov function on the target set throughout the update
process.

Remark 1 During certain epochs, none of the states along
the trajectory fall within the target set, causing the Lyapunov

10 |

Loss value
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Number of epochs
(a) Total loss curve

o b

Regularization loss value
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Number of epochs
(c) Regularization term loss curve
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Figure 3 Control results of the CartPole system.

inequality term to be 0. Note that unlike during training, the
Lyapunov loss curve is not scaled by a factor of 100 when
plotting.

To verify the effectiveness of the learned cost functions, we
use the initial Qg and F( as well as the trained Qoo and Fig
as the loss functions for the NMPC algorithm, respectively.
We then randomly sample M =32 initial states from the
initial state range [—m/6,7/6] and run the NMPC algorithm
with a rolling optimization horizon of N =32, simulating for
100 time steps. The control results obtained using the initial
Qo and F( are shown in Fig. 4(a), while those obtained using
the trained Q00 and Foo are shown in Fig. 4(b).

In Fig. 4, each small square represents the result of one
simulation. When the pendulum is positioned in the upper part
of the square and remains completely stable in the vertical
position, we consider the result stable. It can be observed that
the initial cost function only stabilizes the CartPole system at
the upright position in a few cases, while in the vast majority
of cases, the pendulum remains suspended at the lowest point.
In contrast, the trained cost function successfully stabilizes the
CartPole system at the upright position in all cases. This
further verifies that our algorithm designed an NMPC
asymptotically stable control law for the system.

In fact, after training for 30 epochs, the cost function
already stabilized the CartPole system at the upright position.
The training time of 30 epochs is approximately 1 h on an
Intel Core 17-14500HX CPU, which can be a performance
indicator of the efficiency of the algorithm.

IV. CONCLUSION

This work addresses the problem of designing
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(a) Initial cost function (b) Trained cost function

Figure 4 Control results of the CartPole system using initial and trained cost

functions.

asymptotically stable control laws for a system. By employing
inverse optimal control and leveraging the RDP inequality, we
developed a method to learn cost functions. The resulting
NMPC feedback control law, based on these learned cost
functions, guarantees asymptotic stability. In the future, we
will verify its effectiveness in more realistic scenarios, such as
robotic arm control and power system stability. Our future
research will also focus on further exploiting the theoretical
underpinnings of this method and enhancing its generality.
Specifically, integrating a World Model can extend the
algorithm to handle systems with unknown dynamics.
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