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   Abstract—The  design  of  stabilizing  controllers  for  general
nonlinear  systems  remains  a  challenging  task  due  to  their
inherent  complexities  and  nonconvexities.  In  this  paper,  we
consider  the  problem  of  designing  an  asymptotically  stable
controller  of  a  nonlinear  dynamic  system.  We begin  by  framing
the  problem  as  an  inverse  optimal  control  problem,  aiming  to
design a pair of cost functions that ensure asymptotic stability for
the  nonlinear  model  predictive  control  closed-loop  system.  By
leveraging  the  relaxed  dynamic  programming  inequality,  a
machine  learning  based  algorithm  is  proposed  to  learn  the  cost
functions.  Finally,  we  demonstrate  the  effectiveness  of  the
proposed method through illustrative examples.
  

I.  Introduction

T  hroughout  the  history  of  control  science  and
engineering, system stability has always been a central
research  focus.  Traditional  analytical  frameworks

represented  by  Lyapunov  stability  theory  have  provided
rigorous  mathematical  foundations  for  the  long-term
reliability and convergence of system dynamic behaviors. The
Lyapunov function is a crucial tool within this framework [1].
It  serves  to  analyze  and  prove  the  stability  of  dynamic
systems,  particularly  in  nonlinear  and  time-varying  systems.
The  Lyapunov  method  offers  an  analysis  approach
independent  of  specific  system  solutions.  However,
fundamental challenges persist. Determining the existence of a
Lyapunov  function  for  a  given  system and  constructing  such
functions  remain  open  problems,  with  no  universal  solution
method  established  to  date.  Recently,  in  Ref. [2],  Meta’s
artificial  intelligence  (AI)  team  proposes  a  new  machine

learning  based  method  using  sequence-to-sequence
Transformers [3] to  discover  global  Lyapunov  functions.
However, this method requires known Lyapunov functions as
training  data  and  can  only  discover  global  Lyapunov
functions.  Some  other  methods  also  use  machine  learning
based methods to discover Lyapunov functions [4, 5].

Starting from the 1950s, optimal control problems received
widespread attention and gradually matured. Solving infinite-
horizon optimal control problems provides a way to construct
Lyapunov  functions,  as  well  as  a  method  to  design
asymptotically  stable  controllers [6].  Optimal  control
problems  typically  aim  to  optimize  a  specific  performance
metric,  solving  for  control  inputs  through  the  mathematical
theoretical foundations of the Pontryagin’s minimum principle
[7] and dynamic programming (DP) [8–10].

With the continuous increase in the complexity of dynamic
systems,  traditional  optimal  control  methods  face  new
challenges.  On  the  one  hand,  high-dimensional  state  spaces
lead  to  an  exponential  increase  in  computational  complexity,
which is known as the “curse of dimensionality”. On the other
hand,  dynamic  systems  often  exhibit  complex  characteristics
such  that  accurate  mathematical  modeling  presents  inherent
difficulties.  A  series  of  data-driven  intelligent  methods  are
proposed  to  handle  these  challenges.  Among  these,
reinforcement  learning  (RL) [11] and  adaptive  dynamic
programming (ADP) [12] are methods that can approximately
solve  optimal  control  problems  with  unknown  system
dynamics  in  a  forward-in-time  manner,  thereby  avoiding  the
“curse  of  dimensionality” problem to  some extent.  However,
these  methods  typically  require  a  well-designed  reward
function to guide the learning process, which is often difficult
to obtain in practice.

Inverse  optimal  control  (IOC) [13],  also  known  as  inverse
reinforcement  learning  (IRL) [14],  which  can  be  traced  back
to  Ref. [15],  is  a  control  approach  used  when  the  reward
function or cost function of the system is unknown or partially
unknown. Contrary to forward optimal control,  IOC methods
aim  to  infer  the  unknown  reward  function  of  the  dynamic
system  in  a  Markov  decision  process  from  expert
demonstrations  of  the  optimal  policy.  IOC  currently  has
applied  research  in  multiple  fields,  including  autonomous
driving [16, 17],  human-robot  collaboration [18],  multi-agent
system control [19], and anomaly detection [20].

Optimal  control  requires  the  value  function  to  satisfy  the
dynamic  programming  equality  (optimality),  whereas
asymptotic stability control only requires the value function to
satisfy  the  relaxed  dynamic  programming  (RDP)  inequality
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(sub-optimality),  which  is  generally  a  more  lenient  condition
[21–23]. This fact inspires us to use the IOC method to design
cost  functions  that  satisfy  the  relaxed  dynamic  programming
inequality,  which then ensures  the  asymptotic  stability  of  the
closed-loop system.

In  this  paper,  we  propose  a  method  to  design  an
asymptotically  stable  controller  via  inverse  optimal  control.
Our  method  first  uses  the  idea  of  inverse  optimal  control  to
infer  the  cost  function  of  the  system,  then  leverages  the  cost
function  to  attain  an  asymptotically  stable  controller.  The
contributions of the method can be listed as follows:

(1)  As  far  as  we  know,  this  is  the  first  time  that  inverse
optimal  control  is  used  to  design  an  asymptotically  stable
controller.

(2)  Compared  to  typical  IOC  methods  and  Meta  AI’s
sequence-to-sequence Transformers method, our method does
not require optimal trajectories or expert demonstrations.

N0
N0 = {0,1,2, . . .} Rn n
R+0 = [0,+∞)

Notation　Let  be the set of non-negative integers, that
is .  Let  be  the -dimensional  Euclidean
space,  be the set of non-negative real numbers.
  

II.  Inverse Asymptotic Stability Problem
  

A.  DP and RDP
Consider the discrete-time deterministic system

 

xk+1 = f (xk,uk) (1)
k ∈ N0 f (·, ·) : Rn×Rm 7→ Rn

xk ∈ Rn

uk ∈ Rm

where ,  is  the  system  dynamics,
which is possibly nonlinear,  is the state variable, and

 is the control input.

X ⊆ Rn U ⊆ Rm

V(n, x0)

Dynamic programming is a classic tool for solving optimal
control  problems.  Let  and  be  the  state  space
and control input space, respectively. The DP principle states
that  the optimal  value function  satisfies  the Bellman
equation
 

V(n, x0)=min
µ
{λ(x0,µ(n, x0))+V(n+1, f (x0,µ(n, x0)))} (2)

n ∈ N0 µ : N0×X 7→ U
λ : X×U 7→ R+0 x0

λ

where ,  is  a  feedback  control  law,
 is  a  stage  cost  function,  and  is  the  initial

state.  The  feedback  control  law  obtained  from  the  Bellman
equation  by  solving  the  infinite-horizon  optimal  control
problem also stabilizes the closed-loop system. Thus, solving
infinite-horizon  optimal  control  problems  using  dynamic
programming provides a way to construct Lyapunov functions
and design asymptotically stable controllers [6], if  is given.

Compared  with  DP,  the  relaxed  dynamic  programming  is
considered a more lenient condition than the Bellman equation
 

V(n, x0) ⩾ αλ(x0,µ(n, x0))+V(n+1, f (x0,µ(n, x0))) (3)
n ∈ N0 µ : N0×X 7→ U

V : N0×X 7→ R+0 µ

λ : X×U 7→ R+0 X0

xref ∈ X0 ⊆ X
α ∈ (0,1] x0 X0

n ∈ N0
X0

where ,  is  a  feedback  control  law,
 is  the  corresponding  value  function  of ,

and  is  a  stage  cost.  Let  be  a  forward
invariant  set  of  the  closed-loop  system  and  desired
equilibrium .  If  the  RDP  inequality  in  Formula
(3)  is  satisfied  for  some  and  all  in  and  all

,  the  closed-loop  system  is  asymptotically  stable  on
 [6].  

B.  Inverse RDP Approach
The  DP  principle  enables  the  synthesis  of  asymptotically

stable  controllers  by  solving  infinite-horizon  optimal  control
problems,  but  a  well-designed  cost  function  is  required.
Traditional inverse optimal control methods provide a way to
infer  the  cost  function,  yet  they  typically  rely  on  access  to
optimal trajectories or expert demonstrations. In this work, we
propose  a  novel  approach  to  construct  asymptotically  stable
controllers  from  scratch,  leveraging  the  RDP  in  conjunction
with  inverse  optimal  control  to  infer  suitable  cost  functions,
without  requiring  predefined  cost  or  expert-generated
trajectories.

xref
X0 ⊆ X

N X0 XN
λ : X×U 7→ R+0

F : X 7→ R+0 x ∈ XN

By  inverting  RDP,  we  derive  sufficient  conditions  on  the
cost  functions  that  guarantee  the  asymptotic  stability  of  a
given  closed-loop  system.  Let  the  equilibrium  point 
belong  to  a  target  set ,  and  denote  the  corresponding

-step feasible set of  as . Suppose that we find a stage
cost  function  and  a  terminal  cost  function

 such  that,  for  all ,  the  following  RDP
inequality is satisfied
 

VN(n+1, f (x,µN(n, x)))+λ(x,µN(n, x))−VN(n, x) ⩽ 0 (4)

x ∈ X0and for all , the terminal Lyapunov inequality holds
 

F( f (x,µN(n, x)))+λ(x,µN(n, x))−F(x) ⩽ 0 (5)

VN(n, x)
µN(n, x)

λ F
XN

where  the  value  function  and  feedback  control  law
 are obtained by solving the associated finite-horizon

optimal control problem with cost functions  and , then the
closed-loop system is asymptotically stable on .

λθ1 (x,u;θ1) Fθ2 (x;θ2) θ1 θ2

Given  any  candidate  cost  functions,  finite-horizon  optimal
control  problems  are  solved  to  generate  a  collection  of
demonstration  trajectories.  The  extent  to  which  these
trajectories  violate  Formulas  (4)  and  (5)  provides  a
quantitative  basis  for  evaluating  and  refining  the  cost
functions.  We  denote  the  parameterized  cost  functions  as

 and , where  and  are the parameter
vectors  of  the  functions.  The  design  of  these  functions  can
then be posed as the following optimization problem
 

min
θ1,θ2

L(λθ1 ,Fθ2 ) (6)

L(λθ1 ,Fθ2 )
L(λθ1 ,Fθ2 ) = 0

L(λθ1 ,Fθ2 ) > 0

where  is a stability metric that measures the extent
of  violation  of  the  RDP,  i.e.,  if  and  only  if
Formulas  (4)  and  (5)  hold  for  all  the  demonstration
trajectories, otherwise we have .

VN(n, x) µN(n, x)

L(λθ1 ,Fθ2 )

θ1 θ2
L(λθ1 ,Fθ2 )

To  solve  the  optimization  problem  of  Eq.  (6),  we  use
nonlinear  model  predictive  control  (NMPC)  to  solve  a
receding horizon optimal control problem to obtain the NMPC
value function , NMPC feedback control law ,
and state trajectories as demonstrations, and then the stability
metric  is  computed  based  on  the  demonstrations.
Then,  we  use  gradient  descent  to  update  the  cost  function
parameters  and  according  to  the  stability  metric

.  

III.  Illustrative Example

To  facilitate  a  deeper  understanding  of  the  proposed
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method, this section first provides a linear quadratic system as
an  illustrative  example  to  demonstrate  the  key  differences
between  our  algorithm  and  the  traditional  optimal  control
methods.  Then,  a  CartPole  nonlinear  system  is  used  to
validate the effectiveness of the algorithm.  

A.  Linear Quadratic System
Give a linear quadratic system

 

xk+1 = xk +uk (7)
 

JN = Fx2
N +

N−1∑
k=0

(Qx2
k +Ru2

k) (8)

x, u ∈ R F, Q, R ∈ [0,+∞) xref = 0where , ,  and  is  the
equilibrium point. The objective is to design the cost functions
such that the optimal control stabilizes the system.

Q R
F

R
Q F

Two  cases  are  considered  in  this  example.  The  first  case
assumes  that  the  stage  cost  parameters  and  are  known,
and  we  need  to  infer  the  terminal  cost  parameter .  The
second case only assumes that the stage cost  is known, and
we need to infer both  and .

F

F(·)

NMPC  with  terminal  cost  is  often  referred  to  as  quasi-
infinite horizon NMPC. The reason is that when terminal cost
function  is an approximation of the infinite-horizon value
function,  the  finite  horizon  dynamic  programming  principle
is  an  approximation  of  the  infinite-horizon  dynamic
programming  principle.  Consequently,  the  NMPC  actually
solves  an  approximate  infinite-horizon  optimal  control
problem at each time step [6].

For this system, if  we consider the infinite-horizon optimal
control, the objective function becomes
 

J∞ =
∞∑

k=0

Qx2
k +Ru2

k (9)

V∞(x) = K̄x2
Solving the Bellman equation allows us to directly compute

the  optimal  value  function .  The  corresponding
infinite-horizon  optimal  control  law  stabilizes  the  system.  In
fact, this is also what reinforcement learning is focused on: to
approximately  solve  the  Bellman  equation,  estimate  the
optimal value function, and thereby obtain the optimal control
law, which is also an asymptotically stable control law.

α = 1
F K̄

Q R N
L(λθ1 ,Fθ2 ) 0

F K̄

F
K̄

A  value  function  that  fulfills  the  Bellman  equation  also
satisfies  the  RDP  inequality  (with )  and  achieves
equality.  Considering  the  relationship  between  and ,  for
fixed  and  and  a  small  NMPC  horizon ,  the  stability
metric  is  expected  to  be  close  to  when  the
terminal  cost  parameter  is  close  to .  However,  the
Bellman equation is only a special case of the RDP inequality.
RDP inequality  being  satisfied  does  not  strictly  require  to
approximate , and this highlights the difference between our
algorithm  and  general  optimal  control  methods  like  ADP  or
RL.

F

One  of  the  objectives  of  the  experiment  is  to  validate  the
above  discussion.  The  stability  metric  only  includes  RDP
inequality  in  Formula  (4),  as  it  is  easy  to  prove  that  the
resulting  terminal  cost  must  be  a  Lyapunov  function  for
linear  quadratic  problems.  We  use  the  penalty  function

P(z) =max(0, (z− ϵ))2

ϵ

 to  transform  the  RDP  inequality  into
the stability metric, where  is a small positive number.  

F Q Ra.  Inferring   with Known   and 

N = 1 x0
[−1000,1000] M = 128

In  this  case,  running  cost  parameters  are  fixed.  NMPC
prediction  horizon  is  set  to .  The  initial  state  is
sampled from  uniformly, and  samples
are drawn for each epoch.

Q = 1 R = 1

V∞(x) = 1.61803x2

F = 1.5

F

F 1.6180

Given  and ,  the  infinite  horizon  optimal  value
function  can  be  computed  by  solving  the  Bellman  equation,
and the resulting optimal value function is .
Choose  as  the  initial  value  of  the  terminal  cost
parameter. The loss curve is shown in Fig. 1(a) and the change
of the terminal cost parameter  is shown in Fig. 1(b). It can
be observed that  the loss converges to a small  value,  and the
terminal cost parameter  converges to .

F K̄

F
V1(n, x)

V∞(x)
V1(n, x)

This convergence is consistent with the expectation that the
terminal  cost  approaches  the  optimal  value  function ,
which indicates that after updating the terminal cost parameter

 using  the  proposed  algorithm,  the  resulting  NMPC  value
function  can be regarded as  an approximation of  the
infinite-horizon  value  function .  So,  NMPC  value
function  satisfies the Bellman equation globally, thus
the RDP inequality also holds, which implies that the closed-
loop system is asymptotically stable globally.

Q
Q K̄

F K̄

F

We  also  run  the  experiments  with  different  values.  For
each ,  is computed by solving the Bellman equation, and
the initial value of  is set to a value that is less than . The
results are shown in Table 1, where the second column is the
initial value of , the third column is the converged value of
 

5

6

4

3

Va
lu

e 
(1

 ×
 1

07 )

2

1

0
0 50 100 150 200 250

Number of epochs
(a) Loss curve

(b) Change of F
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1.62

1.58

1.56
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1.54
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Q RFigure 1 Control results of the linear quadratic system with known  and .
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F
K̄

F K̄

 after  iteratively  updating,  and  the  fourth  column  is  the
expected  value  of .  The  results  in Table  1 show  that  the
terminal cost parameter  does converge to  as expected.
 
 

QTable 1 Results under different  values.
Q FInitial FConverged K̄Expected 

0.5 0.9 1.0000 1.000,000,00

0.8 1.2 1.3798 1.379,795,91

1.0 1.4 1.6180 1.618,033,99

1.2 1.6 1.8490 1.848,999,65

1.6 2.0 2.2967 2.296,662,98

2.0 2.4 2.7320 2.732,050,81

 
F

J1 = F(x+u)2+Qx2+Ru2

u
u∗ = −Fx/(F +1)

u∗

u∗

The  following  part  focuses  on  other  values  of  that  also
make  the  RDP  inequality  hold.  Considering  the  objective
function  of ,  taking  the  partial
derivative  with  respect  to ,  and  setting  it  to  zero,  we  can
obtain the optimal control law . Substituting

 into the objective function, the optimal value function can
be  obtained,  and  then  substituting  both  and  the  optimal
value function into the RDP inequality, we have
 

V1(n+1, f (x,u∗))+λ(x,u∗)−V1(n, x) ⩽ 0 (10)
x F3−2F −1 ⩾ 0

F ⩾ 1.6180
F

1.6180

F ⩾ 1.6180
F

F ⩾ 1.6180

Eliminating  in  Formula  (10)  leads  to ,
which  has  the  solution  of  (the  negative  roots  are
discarded). This indicates that as long as the terminal cost  is
greater than or equal to , the RDP inequality holds, and
the  closed-loop  system  is  asymptotically  stable  globally.
When , the stability metric is always zero, thus the
terminal  cost  parameter  will  not  be  updated  by  the
algorithm. We verified this by running a series of experiments
with different initial values of .  

Q F Rb.  Inferring   and   with Known 
R = 1 Q F

N = 1
F 1.5 Q 2.5

Q F Q
1.5510 F 2.2426

Q = 1.5510 R = 1

V∞(x) = 2.2426x2

Q = 1.5510
F ⩾ 2.24260608

In  this  case,  we  fix  and  update  both  and .  The
NMPC prediction  horizon  is  set  to .  Specify  the  initial
value of  to be  and the initial value of  to be . The
loss  curve  is  shown  in Fig.  2(a) and  the  change  of  the  cost
parameters  and  is  shown  in Fig.  2(b).  The  value  of 
converges to , and the value of  converges to .
Fixing  and ,  the  infinite  horizon  optimal
value  function  can  be  computed  by  solving  the  Bellman
equation, and the result is . Solving the RDP
inequality  in  Formula  (10)  analytically  with 
results  in .  These  results  are  again  consistent
with the expectation.  

B.  Nonlinear CartPole System

M = 1
m = 0.1 L = 0.5

g = 9.8 m/s2

[x, ẋ,cosθ,sinθ, θ̇] ∈ R5

u ∈ R

Consider  a  nonlinear  CartPole  system  with  the  following
model  parameters:  cart  mass  kg,  pendulum  mass

 kg,  pendulum  length  m,  and  gravitational
acceleration .  The  system  state  is  denoted  as

,  with  each  dimension  representing
displacement, velocity, cosine of the pendulum angle, sine of
the  pendulum  angle,  and  pendulum  angular  velocity,
respectively.  The  control  input  is .  When  the  CartPole
system  stabilizes  at  the  upright  position,  the  system  state

xref = [0,0,1,0,0]becomes , which is an equilibrium point. We
set  this  point  as  the  desired  equilibrium  for  the  NMPC.  The
optimal control objective function is given by
 

J = (xN − xref)TF(xN − xref)+
N−1∑
k=0

(xk − xref)TQ(xk − xref)+uT
k Ruk

(11)

F Q Rwhere  and  are parameter matrices to be learned, and  is
a known parameter.

R 0.01
Qθ1
Q0 = I

Fθ2

QT
θ1

Qθ1 FT
θ2

Fθ2

In the experiment,  is fixed to . The parameter matrix
 for  the  running  cost  is  initialized  as  an  identity  matrix

( )  and  remains  diagonal  during  subsequent  updates
(only  the  diagonal  elements  are  treated  as  parameters  to  be
learned).  The  parameter  matrix  for  the  terminal  cost  is
randomly initialized using a normal distribution. To ensure the
positive  definiteness  of  the  parameter  matrices,  the  practical
running  cost  is  and  the  terminal  cost  is .  The
initial parameter for the terminal cost function is
 

F0 =


5.8778 3.1375 4.8410 −3.5438 4.3548
3.1375 4.1936 1.7407 −4.2103 1.4381
4.8410 1.7407 5.4636 −1.3833 5.8233
−3.5438 −4.2103 −1.3833 5.7621 −2.1388
4.3548 1.4381 5.8233 −2.1388 9.1122

.

P(z) = z2

The  performance  metric  in  the  experiment  consists  of  the
RDP inequality term, the terminal  Lyapunov inequality term,
and  the  parameter  regularization  term.  We  use  a  quadratic
function  as  the  penalty  function  to  convert  the
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RFigure 2 Control results of the linear quadratic system with known .
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Q Finequalities into the stability metric. To prevent  and  from
being  too  small,  we  regularize  the  summation  of  the
parameters to a fixed value using the following regularization
term
 

β(K −
∑

abs(θi))2 (12)

θi Q F K
β K = 5

K = 25 Q F

100 β = 0.001

where  are diagonal elements of  and all elements of , 
is  a  constant,  and  is  a  hyperparameter.  We  set  and

 for  and , respectively. To balance the influence of
these  three  terms  on  parameter  learning,  we  multiply  the
terminal Lyapunov inequality term by  and let .

[−π/6,π/6]
[−π/60,π/60]

The  initial  angle  of  the  pendulum  is  sampled  from
 uniformly.  The  angle  range  of  the  target  state  is

set  to ,  and  only  when  the  angle  is  within  this
range, the terminal Lyapunov inequality term is activated.

N = 32
M = 64

The  NMPC  prediction  horizon  is  set  to  and  the
batch size is set to . The CartPole environment and the
optimal  control  solver  are  from  Ref. [24].  To  better  handle
objective  functions  in  Bolza  form,  some  modifications  are
made to the solver.

The training loss curve of the total stability metric and each
term  is  shown  in Fig.  3.  It  is  observed  that  except  for  the
Lyapunov inequality loss, the other terms quickly converged.
However,  it  can  be  noted  that  the  Lyapunov  inequality  loss
has  consistently  remained  very  close  to  zero.  Therefore,  it  is
believed that the terminal cost function has consistently acted
as a Lyapunov function on the target set throughout the update
process.

Remark 1　During certain epochs, none of the states along
the trajectory fall within the target set,  causing the Lyapunov

0
100

inequality  term to  be .  Note  that  unlike  during  training,  the
Lyapunov  loss  curve  is  not  scaled  by  a  factor  of  when
plotting.

Q0 F0 Q100 F100

M = 32
[−π/6,π/6]

N = 32
100
Q0 F0

Q100 F100

To verify the effectiveness of the learned cost functions, we
use the initial  and  as well as the trained  and 
as  the  loss  functions  for  the  NMPC  algorithm,  respectively.
We  then  randomly  sample  initial  states  from  the
initial  state  range  and  run  the  NMPC  algorithm
with a rolling optimization horizon of ,  simulating for

 time  steps.  The  control  results  obtained  using  the  initial
 and  are shown in Fig. 4(a), while those obtained using

the trained  and  are shown in Fig. 4(b).
In Fig.  4,  each  small  square  represents  the  result  of  one

simulation. When the pendulum is positioned in the upper part
of  the  square  and  remains  completely  stable  in  the  vertical
position, we consider the result stable. It can be observed that
the initial cost function only stabilizes the CartPole system at
the upright position in a few cases, while in the vast majority
of cases, the pendulum remains suspended at the lowest point.
In contrast, the trained cost function successfully stabilizes the
CartPole  system  at  the  upright  position  in  all  cases.  This
further  verifies  that  our  algorithm  designed  an  NMPC
asymptotically stable control law for the system.

30

30 1

In  fact,  after  training  for  epochs,  the  cost  function
already stabilized the CartPole system at the upright position.
The  training  time  of  epochs  is  approximately  h  on  an
Intel  Core  i7-14500HX  CPU,  which  can  be  a  performance
indicator of the efficiency of the algorithm.  

IV.  Conclusion

This  work  addresses  the  problem  of  designing
 

10

8

6

Lo
ss

 v
al

ue

4

2

0
0 20 40 60 80

Number of epochs
(a) Total loss curve

100

5

4

3

R
D

P 
lo

ss
 v

al
ue

2

1

0
0 20 40 60 80

Number of epochs
(b) RDP term loss curve

100

5

4

3

R
eg

ul
ar

iz
at

io
n 

lo
ss

 v
al

ue

2

1

0
0 20 40 60 80

Number of epochs
(c)  Regularization term loss curve

100

4

3

Te
rm

in
al

 L
ya

pu
no

v 
lo

ss
 v

al
ue

 (1
 ×

 1
0−

8 ) 

2

1

0
0 20 40 60 80

Number of epochs
(d) Terminal Lyapunov term loss curve

100

 
Figure 3 Control results of the CartPole system.
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asymptotically stable control laws for a system. By employing
inverse optimal control and leveraging the RDP inequality, we
developed  a  method  to  learn  cost  functions.  The  resulting
NMPC  feedback  control  law,  based  on  these  learned  cost
functions,  guarantees  asymptotic  stability.  In  the  future,  we
will verify its effectiveness in more realistic scenarios, such as
robotic  arm  control  and  power  system  stability.  Our  future
research  will  also  focus  on  further  exploiting  the  theoretical
underpinnings  of  this  method  and  enhancing  its  generality.
Specifically,  integrating  a  World  Model  can  extend  the
algorithm to handle systems with unknown dynamics.
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