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   Abstract—Visual  perception  computing  is  a  crucial  area  in
artificial  intelligence,  aiming  to  simulate  human  vision  for  the
intelligent  analysis  of  complex  visual  data.  However,  current
methods  face  several  challenges,  such  as  missing  data,  weak
generalization  across  different  scenarios,  and  difficulties  in
learning  complex  patterns,  particularly  in  rare  or  long-tail
situations.  The  framework  of  parallel  images  is  reviewed  in  this
paper, which provides new ways to advance visual perception by
closely connecting real imaging systems with artificial ones. First,
artificial image systems can be built to reflect real environments,
enabling  both  real  and  artificial  images  to  work  together.  These
artificial  systems  produce  multi-modal  data,  helping  to  solve  the
problem  of  incomplete  data.  Second,  virtual-to-real  model
transfer  approaches  based  on  multi-view  feature  fusion  are
discussed, which support adaptive model improvement and better
generalization to new scenarios. Finally, parallel visual models are
introduced  that  combine  data  from  different  sources  and
integrate  various  types  of  knowledge,  greatly  improving
performance on diverse visual recognition tasks.
    Index Terms—Parallel images, visual perception, multimodal data
  

I.  Introduction

IN  recent  years,  continuous  breakthroughs  in  artificial
intelligence (AI), particularly in generative AI and large-
scale  foundation  models,  have  accelerated  the

deployment of computer vision technologies as a core pillar of
perceptual  intelligence  across  diverse  complex  scenarios.
From  autonomous  driving  and  urban  security  to  smart
healthcare and industrial quality inspection, the capabilities of
visual  systems  in  recognition,  understanding,  and  reasoning
are  advancing  toward  higher  precision  and  intelligence.
Despite  significant  progress  in  algorithmic  structures,  model
capacity,  and  computational  resources,  current  visual
perception  systems  still  face  core  challenges,  such  as  strong
data  dependency,  limited  generalization  ability,  and  high

training  costs.  These  bottlenecks  severely  restrict  the
scalability  and  performance  of  such  systems  in  real-world
environments.

The  efficacy  of  vision  models  hinges  on  the  diversity  and
annotation quality of training data. However, real-world visual
data  inherently  exhibit  a  long-tailed  distribution:  most  data
correspond to common scenarios (e.g., clear weather, daylight,
and  routine  traffic),  while  images  capturing  rare  but  critical
events  (e.g.,  storms,  nighttime  accidents,  and  emergencies)
remain  scarce [1–3].  This  data  imbalance  leads  to  degraded
model  performance  in  high-risk,  low-frequency  situations,
posing  substantial  safety  hazards  and  misjudgment  risks.
Moreover, conventional data annotation pipelines heavily rely
on manual labor, requiring frame-level, bounding-box, or even
pixel-wise labels for tasks, such as image classification, object
detection,  and  semantic  segmentation [4–6].  Such  processes
create  bottlenecks  in  efficiency  and  introduce  quality  control
challenges.

Although  generative  AI  techniques  such  as  generative
adversarial  networks  (GANs) [7] and  diffusion  models [8]
offer  new  pathways  for  data  augmentation,  most  current
generative  models  still  focus  on  general  aspects  like  image
quality and style control. They often struggle to generate task-
aware,  domain-specific  visual  data  with  rigorous  physical
consistency,  semantic  coherence,  and  controllability,
particularly  in  complex  scenarios.  Additionally,  while
foundation models such as CLIP [9], SAM [10], and GPT-4V
[11] demonstrate  strong  potential  in  multi-modal  alignment
and  cross-task  generalization,  their  lack  of  interpretability,
uncontrolled  generation  behavior,  and  opaque  training  data
sources  remain  pressing  concerns  in  high-precision  and
safety-critical  visual  applications.  These  issues  call  for
integration  with  more  structured  and  engineering-oriented
technical  frameworks  for  effective  calibration  and
enhancement.

To  address  these  challenges,  parallel  intelligence [12]
introduces  a  novel  paradigm  centered  on  virtual-real
interaction,  data-driven  learning,  and  computational
experimentation.  The  ACP  theory  (artificial  systems,
computational experiments and parallel execution), pioneered
in Refs. [13–15], serves as the methodological cornerstone of
parallel  intelligence.  Building  upon  this  framework,  the
concept  of  parallel  images  has  emerged,  offering  a  solution
that  enables  the  generation  of  large-scale,  diverse,  and finely
annotated  synthetic  visual  data  through  the  construction  of
highly realistic and controllable artificial  scenes,  as shown in
Fig.  1.  This  provides  a  reproducible,  controllable,  and  low-
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cost  approach  to  model  training  and  evaluation  under  data-
scarce conditions.

Specifically,  the  parallel  images  system is  built  upon  three
core  components:  artificial  scene  generation,  computational
experimentation,  and  parallel  execution.  First,  it  utilizes
virtual simulation platforms and 3D modeling technologies to
construct  artificial  scenes  with  high  dimensionality  and
heterogeneity.  These  scenes  are  parameterized  and
controllable,  allowing  for  diverse  combinations  of  variables
such  as  weather  conditions,  lighting  environments,  camera
viewpoints,  and  object  behaviors.  Second,  computational
experiments  are  performed  using  the  generated  data.  These
experiments  are  designed  to  evaluate  and  optimize  the
robustness  and  generalization  capabilities  of  visual  models
under  complex  and  variable  conditions.  Third,  feedback
signals  and  performance  metrics  from  the  real  world  are
incorporated  to  iteratively  adjust  scene  parameters.  This
process enables a closed-loop optimization between the virtual
and  physical  domains  and  supports  the  continuous  evolution
of  models.  This  approach  departs  from  the  conventional
paradigm of static training followed by one-time deployment.
Instead,  it  promotes  a  dynamic  and  adaptive  learning
framework  characterized  by  virtual  training,  real-world
adaptation, and continuous improvement.

With  the  rise  of  multi-modal  foundation  models,  parallel
images technology is entering a new phase of deep integration
with  large-scale  models.  On  the  one  hand,  generative
foundation  models  can  act  as  core  engines  for  virtual  scene
construction  and  image  synthesis.  They  are  capable  of
generating  high-quality  and  semantically  coherent  images
based  on  multi-modal  inputs  such  as  text  descriptions,
sketches,  and semantic  maps.  On the  other  hand,  the  parallel
images  system  provides  structured,  richly  annotated,  and
semantically explicit datasets. These datasets support the fine-
tuning  and  task-specific  adaptation  of  foundation  models
across  various  domains.  This  synergy  facilitates  the
development  of  next-generation  visual  perception  systems.
Such systems are task-driven, guided by semantic constraints,

and  enhanced  through  human-machine  collaboration.
Furthermore,  this  integration  supports  a  paradigm  shift.  It
enables the transition from purely data-driven intelligence to a
more  robust  framework  that  incorporates  data-driven  and
knowledge-guided intelligence.

As  a  systematic  framework  that  integrates  AI-based
modeling, virtual simulation, and real-world feedback, parallel
images  technology  effectively  addresses  challenges  such
as  data  scarcity,  high  annotation  costs,  and  limited
generalization.  Its  integration  with  generative  AI  and
foundation  models  not  only  enhances  the  expressiveness  and
adaptability  of  perception  systems  but  also  provides  a  solid
foundation  for  improving  the  trustworthiness,  controllability,
and  systematicity  of  AI  systems.  This  paper  provides  a
systematic review of the core concepts, key technologies, and
representative  applications  of  parallel  images,  and  explores
their research prospects and application potential.  

II.  Evolution of Parallel Images Technology

With  the  deep  integration  and  innovative  application  of
artificial  intelligence  technologies  and  parallel  theory  in
computer  vision,  parallel  images  have  evolved  into  a
comprehensive  theoretical  and  technical  framework.  As
illustrated  in Fig.  2,  this  paper  systematically  categorizes  the
development  of  parallel  images  technologies  into  four  key
stages  from  the  perspective  of  technological  evolution:  the
exploratory experimentation stage, the theoretical formulation
stage,  the  expansion  and  deepening  stage,  and  the  frontier
breakthrough stage.  

A.  Exploratory Experimentation Stage
Parallel  images,  as  an  extension  of  parallel  systems  in  the

image  domain,  emerge  in  tandem  with  the  development  of
parallel system theory. To address the challenges of prediction
inaccuracies,  modeling  difficulties,  and  the  limitations  of
traditional control methods in complex systems research (e.g.,
socioeconomics  and  traffic  management),  parallel  systems
[13] are  introduced  as  an  innovative  solution.  The  approach

 

Cooperative perception See-through driving Large-scale route planning

Cooperative range100 m 1000 m

Physical
space

Cyber space

Data

Model

Artificial
system

Physical
system

Perception and 
understanding

Learning and
training

Experiment and 
evaluation 

Parallel
execution 

Optimization

Feedback

Cloud

Edge

Device

AI powered  networking

Communication

Computation

Control

 
Figure 1 Parallel images methodology.
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constructs  artificial  systems  to  facilitate  computational
experiments  and  virtual-real  interaction,  employing  a
“multiple worlds” perspective to bridge the modeling gap and
enhance  the  proactivity  of  artificial  systems  for  dynamic
control. Subsequently, Wang [16] proposed the ACP method,
establishing  a  comprehensive  computational  theory  and
methodological  framework  for  parallel  systems.  The  core
concept  comprises  three  key aspects.  First,  artificial  societies
are  constructed  as  computational  laboratories,  where  bottom-
up modeling is  employed to simulate the emergent behaviors
of  complex  systems,  thus  surpassing  the  limitations  of  a
conventional “single-world” paradigm  and  positioning
artificial systems as parallel surrogates of reality. Second, the
adoption of  a “multiple-worlds” perspective  enables  artificial
and  real  systems  to  co-evolve  in  parallel,  facilitating
controllable, reproducible, and systematic analysis of complex
phenomena.  Finally,  a  virtual-real  interaction  mechanism  is
established,  incorporating  dynamic  comparison  and  closed-
loop  feedback  to  support  experimental  validation,  decision
optimization, and intelligent system control.

Researchers  have  actively  explored  the  innovative
applications  of  parallel  systems  and  the  ACP  method  across
various  domains.  In  the  field  of  traffic  management,  Wang
[17] proposed integrating real-world traffic systems, artificial
systems,  and  training  and  evaluation  modules,  achieving  an
organic  combination  of  computational  experiments  and
virtual-real  interaction.  When applied  in  cities  like  Jinan  and
Taicang,  this  system  significantly  improves  emergency
response  capabilities  and  strategy  optimization  in  traffic
management.  Zhu  et  al. [18] constructed  an  artificial  traffic
system using agent-based modeling to simulate the impacts of
population  structure,  activity  plans,  travel  behavior,  and
adverse  weather  conditions  on  traffic  decision-making.  This
approach  effectively  addresses  the  limitations  of  traditional
traffic  simulations  in  modeling  microscopic  behavior  and
accounting  for  indirect  factors.  The  ACP  method  also
demonstrates strong adaptability in the realm of public safety.
Duan et al. [19] developed an artificial society that integrated
multiple  models  to  simulate  epidemic  transmission  processes
and assess the effectiveness of various intervention strategies,
providing scientific support for pandemic control. At the level
of  urban  governance,  Wang  et  al. [20] applied  the  ACP

method  to  an  intelligent  parking  system.  By  simulating  and
optimizing  different  management  strategies,  they  achieve
dynamic allocation and efficient  scheduling of  urban parking
resources. These research efforts collectively demonstrate that
the  ACP  method,  through  its  closed-loop  mechanism of
“modeling-experiment-feedback-optimization”,  offers  a
highly  generalizable,  efficient,  and  sustainable  technical
pathway  for  addressing  intelligent  control  problems  in
complex systems.  

B.  Theoretical Formulation Stage
Wang  et  al. [21] systematically  proposed  parallel  vision

based  on  ACP  theory  for  the  first  time.  This  method
innovatively  integrates  three  core  components  of  parallel
systems  with  computer  vision  techniques:  constructing
artificial  scenes  to  address  data  scarcity,  leveraging
computational  experiments  to  optimize  model  performance,
and  employing  parallel  execution  to  facilitate  continuous
improvement.  Then,  the  theory  of  parallel  images [22] was
introduced  to  tackle  the  issue  of  insufficient  model
generalization caused by difficulties in real-world image data
collection and high labeling costs in computer vision. The key
breakthroughs  include:  (1)  extending  traditional  image
generation  from  single  data  collection  to  a  virtual-real
collaborative  parallel  system  model,  (2)  establishing  a
dynamic  evolutionary  learning  mechanism  that  enables
models  to  update  themselves  in  open  environments
continuously.  These  innovations  provide  novel  solutions  for
visual tasks in dynamic scenarios such as autonomous driving
and  intelligent  surveillance,  propelling  the  paradigm  shift  in
computer vision from static analysis to dynamic evolution.  

C.  Expansion and Deepening Stage
As parallel system theory and the ACP method mature and

evolve,  this  innovative  methodology  extends  to  multiple  key
domains,  forming  domain-specific  technical  frameworks.  In
machine  learning,  Li  et  al. [23] introduced  the  concept  of
parallel  learning,  which  leveraged  the  parallel  evolution  of
software-defined artificial data systems and real-world data to
address  the  challenges  of  model  training  under  small-sample
conditions. In the domain of intelligent transportation, parallel
transportation emerges through the work of Lv et al. [24]. By
constructing artificial transportation systems that interact with
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Figure 2 Evolution of parallel images.
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real-world  road  networks,  this  framework  facilitates  the
collaborative optimization of congestion prediction and traffic
signal control.  In the healthcare sector,  Wang [25] developed
parallel  medicine,  employing  the  ACP  method  to  construct
virtual medical systems that interacted with real clinical data.
This  approach  transforms  clinical “small  data” into  synthetic
“big  data” and  further  distills  it  into “deep  intelligence” for
precise  diagnosis  and  treatment,  effectively  overcoming
model  training  challenges  under  small-sample  conditions,
such  as  in  rare  disease  identification  and  personalized
medicine.  These  domain-specific  advancements  validate  the
general  applicability  of  the ACP method and establish a  new
paradigm  of “virtual-real  interaction  and  parallel  evolution”
for  addressing  complex  system  problems  in  traffic
management, disease diagnosis, and machine learning.

In  parallel  vision,  the  technical  potential  of  ACP  methods
becomes increasingly evident. Zhang et al. [26] focused on the
technical  implementation  of  parallel  vision,  proposing  a
framework  that  leveraged  synthetic  data  to  train  vision
models,  enhancing  model  performance  through  global/local
feature  alignment  and  virtual-real  interaction.  The
effectiveness of this  approach is  validated in object  detection
and  instance  segmentation  tasks.  Given  the  powerful
capabilities  of  the  metaverse  in  virtual  simulation  and  data
generation,  Zhang  et  al. [27] further  introduced  a  metaverse-
based  parallel  traffic  vision  framework.  By  constructing  a
virtual traffic space, implementing computational experiment-
driven  model  learning,  and  optimizing  feedback  through
virtual-real  parallelism,  they  address  challenges  in
generalization, data scarcity, and complex scene adaptation of
environmental perception in intelligent transportation systems,
thereby  extending  the  application  boundaries  of  parallel
vision.

Meanwhile, parallel images technology continues to achieve
in-depth development across multiple domains. In the field of
intelligent  transportation  testing,  Li  et  al. [28] developed  a
parallel  testing  system  based  on  virtual-reality  interaction,
transforming  real-world  scenario  data  into  virtual  extreme
scenarios (e.g.,  adverse weather and emergency events).  This
system  generates  diverse  test  tasks  to  efficiently  and  safely
evaluate and enhance the intelligence of autonomous vehicles.
In  pedestrian  detection,  Zhang  et  al. [29] employed  parallel
vision  methods  to  construct  virtual  scenes  for  generating
synthetic  data.  By  integrating  online  learning  mechanisms,
they  achieve  efficient  training  and  dynamic  optimization  of
pedestrian  detection  models  in  fixed-camera  scenarios.  In
medical image analysis,  Shen et al. [30] constructed artificial
models  of  pathological  tissues  and  interacted  them  with  real
clinical  data,  enabling  high-precision  diagnosis  under  small-
sample conditions. To address the limitations of traditional 2D
images in expressive dimensions and realism, parallel images
technology  further  integrates  3D  reconstruction,  light  field
imaging, and radar simulation, leading to new directions such
as  parallel  point  clouds [31],  parallel  light  fields [32],  and
parallel  radar [33].  By  combining  the  light  field  imaging's
ability to capture complete optical information with the spatial
modeling  advantages  of  3D  reconstruction,  these  methods
achieve  multi-dimensional  and  high-fidelity  digital
reconstruction of complex scenes.  

D.  Frontier Breakthrough Stage
The  rise  of  multi-modal  large  models  injects  new

momentum  into  the  development  of  parallel  images
technology,  significantly  reducing  the  cost  of  constructing
highly  diverse  artificial  scenes.  By  receiving  multi-modal
inputs,  generative  large  models  produce  logically  coherent,
stylistically consistent, and structurally reasonable 2D images
and 3D scenes. Tian et al. [34] proposed a generative parallel
transformer  framework  that  constructed  a  modular  in-vehicle
Transformer  federation  and  an  autonomous  driving  system
composition  platform  based  on  large  language  models.  The
framework  enables  heterogeneous  resource  integration  and
virtual-real  interactive  optimization  across  multiple  driving
scenarios  by  integrating  scenario  engineering  and  federated
intelligence  technologies.  Yu  et  al. [35] proposed  a  parallel
vision framework based on the video generation model  Sora.
By integrating Sora with the ACP parallel system theory, they
constructed  a  closed-loop  intelligent  perception  system  with
virtual-real  interaction.  This  system  automatically  generates
high-fidelity  driving  scene  data  from  textual  descriptions
and  continuously  enhances  the  perception  generalization
capability  of  autonomous  vehicles  in  unknown  scenarios
through a feedback optimization mechanism. Zhang et al. [36]
presented a text-driven 3D scene generation method based on
neural  radiance  field  (NeRF).  By  combining  a  pre-trained
text-to-image  diffusion  model  to  generate  initial  content  and
geometric  priors,  and  employing  a  progressive  refinement
strategy,  they  achieve  multi-view-consistent  high-fidelity
scene  synthesis.  Dai  et  al. [37] proposed  a  virtual  reality
content  generation  method  based  on  NeRF.  By  generating
high-quality 3D objects  from text  prompts and user-specified
regions,  and  employing  compositional  rendering  and
optimization strategies,  they achieved seamless integration of
objects and scenes.

Leveraging  the  powerful  generalization  and  knowledge
representation  capabilities  of  large  models,  parallel  images
can  achieve  cross-modal  and  highly  consistent  synthetic  data
generation across multiple task domains. The resulting image
data  not  only  exhibit  high  controllability  in  semantic
expression and structural organization but also facilitate fine-
grained annotation and reusable datasets. This provides stable,
abundant,  and  high-quality  data  support  for  training,
validation, and deployment stages of visual models. By deeply
integrating  with  large  models,  parallel  images  effectively
address  the  bottlenecks  of  data  acquisition  and  annotation
while  establishing  a  solid  foundation  for  building  a  new
generation  of  visual  perception  systems  that  are  explainable,
controllable, and evolvable.  

III.  Overall Framework of Parallel Images

Within  the  overall  framework  of  parallel  images,  as
illustrated in Fig. 3, artificial scene generation, computational
experiment  simulation,  and  virtual-real  parallel  execution
form  a  cohesive  pipeline  that  connects  data  construction,
model  optimization,  and  closed-loop  feedback. Figure  4
illustrates  the  relevant  key  technologies.  These  three
components  complement  each  other  to  establish  a
continuously  self-optimizing  intelligent  visual  computing
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system, providing robust support for intelligent perception and
understanding in complex environments.  

A.  Artificial Scene Generation
As  a  foundational  component  of  the  parallel  images

framework, artificial scene generation focuses on constructing
highly  realistic  and  diverse  virtual  environments  using
advanced  technologies  such  as  computer  graphics,  virtual
reality,  and  microscopic  simulation,  aiming  to  accurately
replicate complex and dynamic real-world scenarios.

The process of artificial scene generation within the parallel
images  framework  encompasses  three  core  stages:  scene
framework  construction,  dynamic  behavior  simulation,  and
image rendering.  Scene framework construction establishes  a
solid physical and geometric foundation for dynamic behavior
simulation,  while  dynamic  behavior  simulation  introduces
realistic  and  complex  interactions  within  the  environment.
Finally, a programmable rendering system converts the virtual
environment  into  high-fidelity  and  annotatable  visual  data.
First,  scene  framework  construction  relies  on  3D  modeling
tools  and  physics  engines  to  create  scene  topology  and

configure  object  properties.  In  practice,  game  engines,
simulation  tools,  and  3D modeling  software  are  employed to
construct  scenes,  sourcing  or  creating  large-scale  3D  models
that  include  static  objects  (e.g.,  buildings,  roads  and
vegetation),  dynamic  objects  (e.g.,  pedestrians  and  vehicles),
and natural environmental elements (e.g., rain, snow and fog).
Each scene element is assigned precise physical properties and
geometric  characteristics.  Next,  based  on  this  static
foundation,  dynamic  behavior  simulation  is  applied  to
pedestrians,  vehicles,  and  other  dynamic  objects.  This  stage
leverages  intelligent  algorithms  for  path  planning,  obstacle
avoidance,  and  other  complex  behaviors,  utilizing  real-time
communication mechanisms to achieve multi-agent interactive
coordination.  Finally,  a  programmable  virtual  camera  system
simulates  real-world  shooting  processes  to  render  and
generate  image  data.  This  system  supports  multi-angle  and
multi-parameter  controllable  image  capture  and  incorporates
advanced rendering techniques such as ray tracing to produce
high-fidelity  image  datasets  with  comprehensive  annotation
information.

Artificial scenes within the parallel images framework offer
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Figure 3 Framework of parallel images.

 

Virtual scene
generation

Virtual-to-real
domain adaptation

Multi-source
knowledge fusion

Parallel visual
reasoning

Perception Control

Supervision and
synchronization

Analysis and
prediction

Experimentation
and evaluation

Communication

Data KnowledgeFoundation
model

Parallel
execution

AR/VR technology

Virtual image space

Deep learning for image analysis

3D reconstruction technology

Image synthesis and enhancement

Generative adversarial network

Image rendering technology

Real image space
Image acquisition and

sensor technology 

Edge detection and
feature extraction

Image denoising technology

Multi-modal image fusion

Image synthesis and enhancement

Object detection and recognition

 
Figure 4 Key technology in parallel images.

ZHANG et al.: PARALLEL IMAGES: KNOWLEDGE AND DATA-DRIVEN MULTI-MODAL INFORMATION INTELLIGENT ANALYSIS 97 



significant  advantages  in  terms  of  data  diversity,  annotation
accuracy,  and  scene  coverage.  They  effectively  address  key
challenges  in  real-world  scenarios,  such  as  high  data
acquisition  costs,  low  annotation  efficiency,  and  insufficient
coverage  of  long-tail  scenarios,  providing  a  reliable  data
foundation  for  training  and  validating  computer  vision
models.  

B.  Computational Experiment Simulation
Computational  experimental  simulation  is  the  core

component  of  the  parallel  images  framework.  It  primarily
focuses on conducting large-scale  computational  experiments
using the generated synthetic scene data to test, optimize, and
validate the performance of visual algorithms.

Artificially  generated  virtual  data  can  effectively  simulate
various extreme and long-tail scenarios that are challenging to
collect on a large scale in real-world environments, providing
diverse  testing  conditions  for  robust  visual  model  validation.
By  integrating  virtual  data  with  real-world  data,  the
generalization  performance  of  visual  models  can  be
significantly  enhanced,  leveraging  the  broad  coverage  of
virtual  data  and  the  distributional  authenticity  of  real-world
data  to  improve  model  adaptability  across  diverse  scenarios.
Given  the  distributional  differences  between  artificial  scene
data  and  real-world  data,  domain  adaptation  techniques  are
employed.  Models  first  learn  general  feature  representations
from  extensive  virtual  data  and  then  undergo  targeted  fine-
tuning  using  real-world  data,  thereby  substantially  enhancing
their adaptability to practical application scenarios.

Selecting  appropriate  visual  models  for  training  is  crucial
to  meet  specific  application  requirements  and  research
objectives.  In  virtual  traffic  scenarios,  training  autonomous
driving  perception  models  can  effectively  address  varying
traffic  densities  and  pedestrian  behaviors  by  leveraging  their
capabilities  in  feature  extraction  and  object  localization.  For
image  classification  tasks,  architectures  such  as  vision
transformer [38] and  EfficientNet [39] demonstrate  strong
transfer  learning  performance  in  synthetic  data  training
because  of  their  self-attention  mechanisms  and  superior
parameter  efficiency.  By  utilizing  artificial  scene  data,  these
models  can  more  accurately  identify  image  categories.  In
semantic  and  instance  segmentation  tasks,  training
segmentation  models  using  synthetic  building  scene  data  can
significantly  improve recognition  accuracy for  elements  such
as  roads,  buildings,  and  vegetation.  For  pose  estimation  and
behavior analysis, training action recognition models in virtual
human motion scenarios  can enhance predictive  accuracy for
complex  postures.  Throughout  the  training  process,  model
parameters are continuously adjusted to enable the models to
learn  key  features  and  patterns  from  image  data,  thereby
optimizing their performance for specific tasks.

Evaluating  model  performance  across  diverse  datasets  is
essential for verifying a model’s generalization capability and
adaptability  to  various  real-world  scenarios.  In  addition  to
generalization  assessment,  computational  experiments  serve
as  a  robust  tool  for  model  comparison  and  selection.  By
training  and  evaluating  multiple  visual  models  on  a
standardized  dataset,  one  can  systematically  compare

performance  metrics  and  identify  the  most  suitable  model
for  practical  deployment.  Furthermore,  computational
experiments  enable  an  in-depth  analysis  of  how  variations
in  model  architectures  and  training  parameters  affect
performance.  For  instance,  by  adjusting  factors  such  as  the
number  of  neural  network  layers  or  the  learning  rate,
researchers  can  observe  corresponding  performance  changes,
thereby gaining valuable  insights  for  model  optimization and
identifying the optimal configuration for specific tasks [6, 40].  

C.  Virtual-Real Parallel Execution
Virtual-real  parallel  execution,  a  pivotal  mechanism within

the  parallel  images  framework,  is  essential  for  realizing its
closed-loop  optimization  structure.  This  mechanism
systematically  refines  virtual  scene  models  based  on  explicit
feedback  from  real-world  deployments,  concurrently
leveraging  these  optimized  virtual  models  to  enhance  real-
world  visual  models.  Such  dual-path  iterative  optimization
significantly  enhances  the  effectiveness  of  intelligent
perception and interpretation of complex environments.

The iterative optimization process unfolds through a clearly
defined feedback loop. Visual models are initially deployed in
real-world  scenarios  for  practical  validation,  collecting
comprehensive  performance  data  that  capture  discrepancies
between  predictions  and  actual  environmental  observations,
alongside  variations  in  model  performance  across  diverse
operational  contexts.  This  feedback  is  systematically
processed  to  inform  and  optimize  virtual  scene  models.  For
example,  in  autonomous  driving  scenes,  in  which  visual
models  exhibit  elevated  error  rates  under  adverse  conditions
such  as  foggy  weather,  real-world  observations  initiate  the
creation of an equivalent foggy environment within the virtual
space.  Critical  parameters  such  as  atmospheric  scattering
coefficients,  illumination  intensities,  and  visibility  distances,
are  meticulously  adjusted  to  ensure  high  fidelity  between
virtual  conditions  and  real-world  environmental
characteristics.  Dynamic  objects  and  their  behaviors  within
these  virtual  environments  are  also  calibrated,  including
adjustments to vehicle speed distributions under compromised
visibility  and  refinement  of  fog  light  activation  rules  to
synchronize  virtual  target  behaviors  with  the  observed  real-
world data.

The  refined  virtual  model,  developed  through  precise  real-
world  feedback,  subsequently  informs  real-world  visual
systems. Artificial scenes, benefiting from inherent flexibility
and  replicability,  enable  the  seamless  transformation  of
optimized  parameters  and  refined  detection  methodologies
from  virtual  environments  back  to  real-world
implementations.  This  iterative  and  bi-directional  feedback
mechanism  fosters  continuous  reciprocal  enhancement
between  virtual  and  real-world  models.  By  repeatedly
deploying  real-world  visual  models,  collecting  precise
performance  feedback,  accordingly  refining  virtual  scenes,
and  reapplying  these  refinements  to  real-world  contexts,  the
visual  perception  system  progressively  optimizes.  This
mechanism  ensures  highly  adaptive,  accurate,  and  reliable
visual perception capabilities, directly benefiting complex and
practical applications.  
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IV.  Key Technology of Parallel Images
  

A.  Virtual Scene Generation Driven by Multi-Modal Data
(1)  Editable  content  generation  in  virtual  scenes.　

Editable  content  generation  in  virtual  scenes  leverages
synthetic  generation  algorithms  based  on  deep  learning  and
virtual  reality  to  construct  virtual  environments  that  enable
users  to  perform  content  editing  operations  using  input  data
such as text, images, and audio.

In parallel images, software-defined artificial image systems
generate  extensive  synthetic  image  data  based  on  real-world
“small  data”,  thereby  constructing  a  comprehensive  big  data
repository  for  parallel  images.  Zhang  et  al. [29] proposed  a
parallel  vision  approach  for  scene-specific  pedestrian
detection,  addressing  the  challenges  of  data  scarcity  and
environmental  variability  by  first  pre-training  the  model  on
augmented-reality  data  and  then  incrementally  optimizing  it
with  newly  synthesized  data  as  the  scene  evolves.  Similarly,
Li  and Wang [41] applied the  ACP methodology to  the  field
of  visual  perception  for  intelligent  driving.  Their  work
facilitates the construction of complex artificial driving scenes
and  the  generation  of  large-scale  annotated  datasets  under
challenging  imaging  conditions,  improving  both  the  training
and  evaluation  of  vision  models  in  dynamic  and  adverse
scenarios.  Tian et  al. [31] further strengthened this  capability
through  virtual-real  interaction  mechanisms  for  3D  point
cloud  generation,  enhancing  the  fidelity  and  editability  of
object-level  modeling within these environments.  Sorscher  et
al. [42] addressed  the  limitations  of  traditional  data  scaling
laws  by  introducing  the  data  pruning  techniques  to  optimize
training  datasets.  Their  method  reduces  redundancy  while
enhancing the relevance of training data, leading to improved
neural  scaling  and  reduced  computational  costs  in  content-
editable environments.

Traditional  3D  reconstruction  and  rendering  methods
primarily  rely  on  geometric  modeling  and  texture  mapping,
generating  realistic  3D  scenes  by  constructing  detailed
polygonal meshes and applying real-world textures. However,
these  methods  face  challenges  such  as  data  acquisition
difficulties,  high  modeling  complexity,  and  substantial
rendering costs, especially when dealing with dynamic scenes
or complex materials. To address these challenges, Mildenhall
et  al. [43] introduced  neural  radiance  field,  a  method  for
synthesizing  high-fidelity  3D  reconstructions  and  view-
consistent renderings from 2D images by representing scenes
as  continuous  volumetric  functions.  NeRF  effectively
preserves  geometric  and  visual  consistency  under
transformations,  making  it  essential  for  generating  editable
content with realistic appearance and structure. Based on this
concept, Tian et al. [44] explored how learning visual features
from  models  rather  than  data  can  impact  the  quality  of
generated scenes. Their insights provide valuable guidance for
optimizing  rendering  system  training  strategies,  striking  a
balance between realism and flexibility in scene manipulation.

The  NeRF  model  represents  3D  scenes  as  radiance  fields,
enabling  continuous  view  rendering  and  detailed
reconstruction.  However,  its  generation  process  relies  on
dense viewpoint  data  and suffers  from slow rendering speed,

heading  to  real-time  applications  challenging.  Additionally,
NeRF’s  implicit  representation modeling lacks  direct  support
for  semantic  control,  limiting  scene  editing  and  content
manipulation capabilities. In contrast, diffusion models utilize
a  stepwise  perturbation  and  restoration  process  to  effectively
capture  data  distributions,  demonstrating  strong  generative
capabilities  while  seamlessly  integrating  multi-modal
information (e.g.,  text and images),  thus enabling text-guided
scene  editing  and  generation.  Rombach  et  al. [45]
demonstrated  the  capabilities  of  latent  diffusion  models
(LDMs)  in  generating  high-resolution  images  that  served  as
detailed  textures  and  backgrounds  in  virtual  environments,
achieving  state-of-the-art  performance  while  significantly
reducing  computational  costs  compared  with  pixel-based
diffusion models. Lee et al. [46] extended this concept to 3D
by  introducing  a  triplane-based  diffusion  model  for
synthesizing  real-world  outdoor  scenes.  Their  approach
encodes 3D scenes as compact triplane feature representations
and  leverages  sinusoidal  embeddings  to  predict  semantic
classes,  enabling  the  generation  of  semantically  rich  and
structurally  coherent  3D  scenes  with  high-quality  rendering
and  detailed  annotations.  To  further  enhance  scene
compositional  flexibility  and  support  user-guided  3D
generation,  Zhou  et  al. [47] introduced  generative  3D
Gaussians  with  layout-guided  control  (GALA3D),  a
framework  that  leveraged  large  language  models  (LLMs)  to
generate  initial  layouts  and  employed  layout-guided  3D
Gaussian representations with adaptive geometric constraints.
The  framework  integrates  conditioned  diffusion  for  instance-
scene  optimization,  enabling  realistic  scene  generation  with
consistent  geometry,  texture,  and  object  interactions  while
maintaining high-fidelity object-level details.

To address the challenge of generating realistic and diverse
driving scenes  with  consistent  geometry  and semantics,  Li  et
al. [48] introduced  a  unified  framework  named  UniScene.
This method leverages an occupancy-centric representation to
bridge  3D  geometry  and  semantics.  It  jointly  learns  multi-
object  layout,  scene-level  occupancy,  and  fine-grained
geometry  generation  using  a  transformer-based  architecture.
By  unifying  scene  understanding  and  generation,  UniScene
enables  controllable,  structured,  and  coherent  driving  scene
synthesis  from  a  single  latent  code.  To  enable  realistic  and
controllable  street  view  synthesis,  Yan  et  al. [49] proposed
StreetCrafter,  a  video  diffusion  framework  tailored  for  urban
scenes.  It  incorporates  a  multi-scale  layout-to-video
generation pipeline, which is guided by semantic and instance
layouts.  The  model  introduces  a  controllable  generation
module  that  allows  editing  and  manipulation  of  scene
elements  across  time.  By  leveraging  spatial-temporal
consistency  and  layout  conditioning,  StreetCrafter  achieves
high-quality and editable street view video synthesis.

(2) Style attribute transformation of virtual scenes.　The
style  attribute  transformation  of  virtual  scenes  refers  to  the
application of various techniques to alter the visual or artistic
style  of  a  scene,  transitioning  it  from  one  stylistic  state  to
another.

Early  methods  based  on  convolutional  neural  networks
(CNNs)  utilize  multi-layer  convolutional  operations  to
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effectively  capture  texture,  color,  and  other  fine-grained
features  in  images.  Gatys  et  al. [50] proposed  a  CNN-based
image  style  transfer  method  that  utilized  a  pre-trained  VGG-
19  network  to  extract  feature  representations  from  both
content and style images. The content features are represented
by  the  activations  in  higher  layers,  capturing  the  overall
structural  information  of  the  image,  while  the  style  features
are  represented by the  Gram matrices  of  feature  maps  across
multiple  layers,  capturing  the  statistical  properties  of  texture
and  color  distributions.  During  the  optimization  process,  a
randomly  initialized  noise  image  is  iteratively  updated  by
minimizing  the  weighted  sum  of  content  loss  and  style  loss,
resulting in a synthesized image that preserves the structure of
the content image while adopting the artistic style of the style
image.  This  method  effectively  separates  and  recombines
content  and  style,  producing  artistic-style  images  with  high
perceptual quality.

Generative  adversarial  networks  (GANs)  are  also  widely
applied  in  image  style  transfer  tasks.  A  GAN  consists  of  a
generator  and  a  discriminator,  both  of  which  are  trained
adversarially  to  improve  performance.  In  style  transfer
applications, the generator is responsible for producing images
with a specific style, while the discriminator assesses whether
the  generated  images  align  with  the  target  style  and  appear
realistic.  This  adversarial  mechanism  enables  GANs  to
generate high-quality stylized images. Zhu et al. [51] proposed
a method for unpaired image-to-image translation that learnt a
mapping  between  a  source  domain X and  a  target  domain Y
without  requiring  paired  training  data.  By  incorporating
adversarial  loss  to  align  distributions  and  cycle  consistency
loss  to  preserve  content  structure,  the  method  enables  tasks
such  as  style  transfer,  object  transfiguration,  and  photo
enhancement  in  the  absence  of  paired  examples.  Recently,
Wang  et  al. [52] proposed  a  single  sample-based  traffic
generative  adversarial  network  (SST-GAN),  a  method  for
generating realistic images of scarce driving scenes based on a
single  sample,  utilizing  style  transfer  through  transition
retraining  and  content  generation  guided  by  a  structural
similarity  index  loss.  The  method  effectively  expands  rare
scene  datasets  for  deep  learning-based  vision  algorithms,
enhancing  their  adaptability  to  extreme  weather  and  traffic
conditions.

Controllable  and  semantically  guided  style  transformation
methods  achieve  visual  consistency  and  flexible  control  over
details  such  as  lighting,  material,  and  texture  by  explicitly
separating geometric structure from style attributes. Compared
with  the  traditional  methods,  they  effectively  reduce  data
requirements while enhancing the editability and scalability of
the generated content. Recent advancements have increasingly
focused  on  controllable  and  semantically  guided  style
transformations  in  virtual  environments.  Zhang  et  al. [53]
introduced  reference-based  non-photorealistic  radiance  field
(Ref-NPR),  a  controllable  framework  that  applied  a  single
stylized reference view to guide the stylization of 3D scenes.
By  decoupling  scene  geometry  from  style  attributes  such  as
color  and  brushstroke  patterns  through  radiance  field
modeling,  the  framework  enables  targeted  and  high-fidelity
artistic rendering of virtual scenes. Zhang et al. [54] proposed

a  novel  approach for  synthesizing  realistic  3D natural  scenes
from a single semantic mask by leveraging generative models
and  view-dependent  rendering.  Their  framework  utilizes  a
semantic  field  as  an  intermediate  representation,  enabling
precise control over style attributes such as lighting, material,
and texture, thereby enhancing the realism and consistency of
generated scenes. Additionally, in the process of virtual scene
construction  and  style  transformation,  3D  reconstruction
techniques extract geometric structure information from multi-
view  images  or  depth  data  to  reconstruct  the  three-
dimensional shape and texture mapping of a scene, laying the
foundation for subsequent stylization operations. Höllein et al.
[55] proposed a style transfer method specifically designed for
indoor  3D  reconstructed  scenes.  The  method  achieves  view-
independent and style-consistent 3D stylization by optimizing
the explicit textures of the reconstructed meshes. Specifically,
depth-aware  and  angle-aware  optimization  strategies  are
employed,  incorporating  surface  normals  and  depth
information  to  maintain  texture  consistency  across  the  entire
scene. Furthermore, multi-view image optimization is applied
to  prevent  stretching  and  distortion  issues  commonly  seen  in
traditional 2D style transfer when adapted to 3D scenes.

To  address  the  limitations  of  low-fidelity  and  open-loop
simulation  in  autonomous  driving,  Yan  et  al. [56] proposed
DrivingSphere,  a  4D  simulation  framework  with  realistic
sensor  modeling  and  dynamic  interactions.  It  reconstructs  a
high-fidelity  4D  environment  by  integrating  multi-agent
trajectories,  dynamic  objects,  and  sensor  data  over  time.  The
framework  enables  closed-loop  simulation  with  perception-
action feedback, supporting both visual realism and behavioral
accuracy  for  training  and  evaluating  autonomous  driving
systems.  To  overcome  the  inefficiency  of  standard  diffusion
models  in  real-time  driving  tasks,  Liao  et  al. [57] proposed
DiffusionDrive,  a  novel  end-to-end  driving  framework.  It
introduces a truncated denoising diffusion process to generate
future  driving  actions  efficiently.  By  learning  from  expert
demonstrations, the model predicts trajectories in a coarse-to-
fine  manner,  significantly  reducing  the  inference  steps.
DiffusionDrive  balances  generation  quality  and  efficiency,
enabling  accurate  and  responsive  autonomous  driving  in
complex urban environments.  

B.   Multi-View  Feature  Fusion  and  Virtual-Real  Domain
Transfer
  

(1)  Multi-task  feature  fusion  and  semantic  information
interaction.　 The  aim  of  multi-task  feature  fusion  and
semantic  information  interaction  is  to  efficiently  integrate
features  from  parallel  images  captured  from  different
viewpoints,  conditions,  or  time  points,  while  facilitating
semantic information exchange among multiple related tasks.

Recently,  research  in  multi-task  learning  has  increasingly
emphasized  cross-task  and  cross-modal  feature  fusion,
focusing  on  leveraging  semantic  interactions  to  boost  overall
performance and robustness. Liu et al. [58] proposed SegMiF,
a  multi-interactive  feature  learning  architecture  designed  for
image  fusion  and  segmentation.  The  method  leverages  dual-
task  correlation  to  enhance  the  performance  of  both  tasks.
SegMiF introduces a hierarchical interactive attention module
and a dynamic weighting factor, effectively balancing feature
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interactions between the fusion and segmentation networks to
generate visually appealing fused images. Similarly, Wang et
al. [59] proposed  a  multiple  enhancement  network  (MENet)
for  salient  object  detection,  which  was  designed  to  simulate
human  perception  by  iteratively  aggregating  multi-scale
boundary and region features through a dual-branch decoder.
The  framework  is  guided  by  a  multi-level  hybrid  loss
function,  effectively  enhancing  segmentation  accuracy  in
complex scenes.

References [60, 61] focus  on  enhancing  specific
components  within  the  multi-task  visual  processing  pipeline,
particularly  in  the  domains  of  semantic  encoding  and
decoding.  Huang  et  al. [60] proposed  a  reinforcement
learning-based  semantic  bit  allocation  framework,  where
semantic  concepts,  defined  by  class,  spatial,  and  visual
attributes,  were  encoded  via  a  convolutional  semantic
encoder.  The bit  allocation strategy is  dynamically optimized
through  reinforcement  signals  linked  to  semantic  task
performance.  For  decoding,  a  GAN-based  semantic
reconstruction  module  integrates  both  local  and  global
contextual features via attention mechanisms, achieving high-
fidelity  semantic  restoration.  Wan  et  al. [61] addressed
human-object  interaction  detection  by  introducing  a  multi-
level  semantic  recognition  model.  Their  approach  employs
attention mechanisms to dynamically emphasize human pose-
related  regions,  thereby  enhancing  the  model's  capacity  for
fine-grained  interaction  understanding.  Transformer-based
architectures leverage efficient semantic feature selection and
modeling.  Chen  et  al. [62] proposed  a  local  attention
transformer  that  performed  adaptive  down-sampling  by
learning to retain task-relevant pixels. Their model introduces
a point-based attention block supported by balanced clustering
and  learnable  neighborhood  merging,  yielding  efficient
representations for pixel-level segmentation tasks.

In  the  context  of  large  multi-modal  models,  unified
semantic  interaction  across  tasks  and  domains  has  become  a
critical  research  direction.  Zhang  et  al. [63] proposed  OMG-
LLaVA, a unified framework that integrated pixel-level visual
understanding with large language models. By aligning visual
inputs,  perception  priors,  and  visual  prompts  with  text
instructions,  OMG-LLaVA  enables  LLMs  to  generate  both
language and segmentation outputs. The framework employs a
unified token generation mechanism, incorporating text, pixel,
and  object  tokens  to  flexibly  handle  diverse  vision-language
tasks.  Xin  et  al. [64] introduced  multi-modal  alignment
prompt (MmAP), a method designed for cross-domain multi-
task learning by aligning text and visual modalities during the
fine-tuning  process.  The  framework  leverages  task  grouping
and  task-specific  prompts  to  facilitate  efficient  semantic
transfer  across  tasks  while  maintaining  modality-specific
feature alignment and achieving significant performance gains
with minimal parameter tuning.

To  bridge  the  gap  between  vision-language  understanding
and  autonomous  driving,  Wang  et  al. [65] proposed
OmniDrive,  a  comprehensive  dataset  and  framework.  It
incorporates  multi-modal  data,  images,  driving  states,  and
natural  language descriptions,  augmented with  counterfactual
reasoning  scenarios.  The  method  enables  models  to  learn

causal  relationships  by  comparing  real  cases  with
counterfactual cases. OmniDrive supports tasks such as action
prediction,  reasoning,  and  instruction  following,  fostering
deeper semantic understanding for decision-making in driving
environments.  To  model  complex  spatial-temporal  dynamics
in  autonomous  driving,  Zhao  et  al. [66] proposed
DriveDreamer4D,  a  world  model-based  framework  for  4D
scene understanding. It leverages latent dynamics modeling to
learn  from  sequential  multi-view  and  multi-agent  data.  The
method encodes past observations into a compact latent space
and  predicts  future  scenes  via  a  learned  dynamics  prior.
DriveDreamer4D  enables  efficient,  scalable,  and  predictive
representation  of  driving  environments  for  planning  and
simulation.  

(2)  Multi-modal  collaborative  optimization  for  virtual-
real  domain  adaptation.　 Multi-modal  cooperative
optimization  in  virtual-real  domain  adaptation  focuses  on
addressing  how  to  effectively  process  and  optimize  parallel
data  from  real-world  scenes  and  data  generated  from  virtual
scene  construction.  The  objective  is  to  enable  models  to
effectively adapt to the discrepancies between virtual and real
domains,  encompassing  differences  in  image  features,  scene
semantics, and other aspects.

To address the challenges of domain discrepancies between
virtual  and  real  environments,  recent  studies  have  explored
various  strategies  for  multi-modal  collaborative  optimization
in domain adaptation. Zhang et al. [67] proposed a coarse-to-
fine domain adaptation framework designed for traffic  object
detection.  The  method  initially  applies  a  coarse  alignment
module  to  mitigate  domain  discrepancies  at  a  global  feature
level,  followed  by  a  fine-grained  adaptation  module  that
refines  region-level  features  through  adaptive  feature
calibration, enhancing detection accuracy under domain shifts.
Similarly,  Zhou  et  al. [68] proposed  a  multi-granularity
alignment domain adaptation framework for object  detection,
which  aligned  features  at  three  levels:  image,  instance,  and
pixel.  By  integrating  global  feature  alignment,  instance-level
feature  refinement,  and  pixel-wise  adaptation,  the  method
effectively  reduces  domain  discrepancies  and  improves
detection robustness in cross-domain scenarios. Lu et al. [69]
proposed  MLNet,  a  mutual  learning  network  with
neighborhood invariance for universal domain adaptation. The
framework  employs  two  collaborative  networks  to  learn
complementary  domain-invariant  features  while  enforcing
neighborhood  consistency  across  source  and  target  samples,
thereby  enhancing  feature  alignment  and  improving
adaptation performance under diverse domain shifts.

Beyond  domain  adaptation  in  object  detection,  several
works have addressed related issues in multi-modal and cross-
domain perception tasks, such as aligning heterogeneous data
representations  and  ensuring  robust  performance  across
varying  environmental  conditions  and  sensor  configurations.
Wang et al. [70] proposed a parallel vision framework aimed
at  addressing  long-tail  regularization  in  autonomous  driving
scenarios  by  leveraging  the  IVFC  testing  environment.  The
method  integrates  virtual  and  real-world  visual  data  to
mitigate  data  imbalance,  employing  a  two-stage  training
process that  includes feature re-weighting for tail  classes and
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domain  adaptation  to  align  synthetic  and  real  data
distributions, effectively enhancing detection accuracy for rare
objects and challenging scenarios.  Gao et  al. [71] proposed a
comprehensive  benchmark  and  a  novel  model  for  light  field
saliency  detection,  addressing  the  challenges  of  extracting
depth  and  focusing  cues  effectively.  The  method  leverages  a
dual-branch  architecture,  consisting  of  a  spatial  branch  for
foreground-background  segmentation  and  a  depth  branch  for
salient region refinement.

From  the  perspective  of  remote  sensing,  Huang [72]
proposed  a  framework  for  efficient  remote  sensing  that
combined  harmonized  transfer  learning  and  modality
alignment  to  address  cross-domain  discrepancies  in  multi-
modal  remote  sensing  data.  The  method  employs  a  dual-
stream  network  to  separately  process  optical  and  SAR  data,
followed  by  a  modality  alignment  module  that  bridges  the
feature  gaps  through  adversarial  learning.  Additionally,  a
transfer  learning  strategy  is  utilized  to  adapt  pre-trained
models to the target domain, enhancing classification accuracy
while  minimizing  computational  overhead.  In  the  domain  of
image fusion, Bai et al. [73] proposed a learning-based image
fusion  framework  that  leveraged  reconstruction  with  a
learnable  loss  function  via  meta-learning.  The  method
employs  a  meta-learning  strategy  to  optimize  the  fusion
network  by  dynamically  adjusting  the  loss  function,  thereby
enhancing  the  fusion  quality  and  preserving  essential
information from source images across diverse scenarios.  

C.  Parallel Execution with Heterogeneous Data and Knowledge
Fusion
  

(1)  Structured  information  extraction  and
representation  from  heterogeneous  data.　 In  the  parallel
images domain, the extraction and representation of structured
information  from  heterogeneous  data  serve  as  crucial
components  for  achieving  virtual-real  interaction  and  scene
modeling. Different types of data, such as point clouds, RGB
images, depth images, and semantic labels, exhibit significant
variations  in  data  structure,  resolution,  and  noise
characteristics.  Effectively  integrating  these  diverse  data
modalities  and  constructing  a  unified  representation
framework  are  essential  for  comprehensive  scene  perception
and accurate modeling of real-world environments.

To  address  the  challenges  of  extracting  structured
information  from  heterogeneous  data  sources,  recent  studies
have proposed a range of methods that emphasize multi-modal
fusion,  cross-domain  alignment,  and  efficient  feature
representation.  Fan  et  al. [74] proposed  a  spatial  contextual
feature learning framework that designed for large-scale point
cloud  segmentation.  It  leverages  a  multi-scale  contextual
aggregation  module  to  capture  spatial  dependencies  across
varying  scales,  while  a  context-aware  attention  mechanism
refines  feature  representations  by  emphasizing critical  spatial
regions,  thereby  enhancing  segmentation  accuracy  in  the
complex  scenes.  Lu  et  al. [69] proposed  a  mutual  learning
network  designed  to  address  universal  domain  adaptation  by
incorporating  neighborhood  invariance.  The  method  employs
a  dual-branch  architecture,  in  which  one  branch  focuses  on
domain-invariant  feature  extraction  while  the  other

emphasizes  neighborhood  consistency.  The  network  jointly
learns  mutual  representations,  enabling  robust  adaptation
across  diverse  domain  shifts.  Hemker  et  al. [75] proposed
HEALNet,  a  hybrid  early-fusion  attention  learning  network
designed  for  multi-modal  biomedical  data  integration.
HEALNet  combines  modality-specific  and  shared  parameter
spaces  within  an  iterative  attention-based  architecture,
enabling  the  model  to  preserve  structural  information  unique
to each modality while capturing cross-modal interactions in a
shared  latent  space.  This  design  allows  effective  handling  of
missing  modalities  during  both  training  and  inference  and
facilitates  model  interpretability  by operating directly  on raw
data inputs.

High-resolution  remote  sensing  images  often  suffer  from
spectral  distortions  during  the  fusion  process  because  of
discrepancies  between  spectral  and  spatial  resolutions.  To
address  this  issue,  Li  et  al. [76] proposed  an  image  fusion
method  based  on  image  segmentation  to  reduce  spectral
distortions in the high-resolution remotely-sensed imagery. By
segmenting  the  panchromatic  (PAN)  image,  the  method
identifies  mixed  pixels  (MPs)  near  object  boundaries.  These
MPs  are  then  fused  using  the  spectral  information  of  pure
pixels  within  the  same  segment,  enhancing  spectral  fidelity
and  spatial  detail.  This  approach  effectively  sharpens  object
boundaries  and  improves  the  overall  quality  of  the  fused
image. Image manipulation localization is crucial for detecting
forgeries  and  preserving  image  integrity.  However,  existing
methods  often  rely  on  pre-trained  networks,  which  may
introduce  biases  and  limit  generalization  to  unseen
manipulation  types.  Zhou et  al. [77] proposed a  pre-training-
free  framework  for  image  manipulation  localization  using
non-mutually  exclusive  contrastive  learning.  This  method
leverages  contrastive  loss  to  learn  discriminative  features
between manipulated and authentic regions without relying on
pre-trained  networks,  enabling  robust  detection  of  localized
image  alterations  across  diverse  manipulation  types.  In  the
domain  of  unsupervised  visual  understanding,  Li  et  al. [78]
proposed  text-aided  clustering  (TAC),  an  externally  guided
image  clustering  method  that  integrated  textual  semantics
from  WordNet.  TAC  constructs  a  text  space  by  selecting
discriminative nouns that  distinguish image semantic centers.
Each  image  is  then  paired  with  a  retrieved  noun,  forming  a
text  counterpart.  To  enhance  clustering  performance,  TAC
employs  cross-modal  mutual  distillation,  aligning
neighborhood  structures  between  image  and  text  modalities.
This  approach  effectively  leverages  external  knowledge  to
improve clustering accuracy across various benchmarks.

Unregistered  infrared-visible  image  fusion  remains  a
challenging  task  because  of  the  inherent  modality
discrepancies  and  lack  of  accurate  alignment  between  the
infrared images and visible images. Traditional methods often
treat  registration  and  fusion  as  separate  stages,  leading  to
cumulative errors and suboptimal fusion results. Li et al. [79]
proposed a  novel  framework for  unregistered infrared-visible
image  fusion  that  integrated  implicit  registration  and  fusion
into  a  single  stage.  It  employs  a  shared  shallow  feature
encoder  and  a  learnable  modality  dictionary  to  align  cross-
modal features, enhancing consistency and reducing modality
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discrepancies.  Additionally,  a  correlation  matrix  captures
pixel  relationships  between  modalities,  facilitating  effective
feature  alignment  and  improving  fusion  quality.  To  address
the  challenge  of  effective  multi-agent  sensor  fusion  under
noisy radar signals, Huang et al. [80] proposed V2X-R, which
was  a  cooperative  perception  framework.  It  introduces  a
denoising  diffusion  model  to  fuse  LiDAR and  4D radar  data
across  vehicles.  The  model  learns  to  denoise  and  align  radar
features  with  LiDAR  representations,  enabling  robust  and
complementary  multi-modal  feature  fusion  for  accurate  3D
object detection in V2X scenarios. To tackle the challenge of
reconstructing  dynamic  driving  scenes  from  incomplete  or
noisy  observations,  Ni  et  al. [81] proposed  ReconDreamer,
which  was  a  world  model  framework  with  online  restoration
capability.  It  integrates  a  latent  dynamics  model  with  a
restoration  module  that  progressively  refines  incomplete
inputs during rollout. By jointly modeling scene dynamics and
performing online correction, ReconDreamer enables accurate
4D  reconstruction  of  driving  environments,  enhancing
perception  and  planning  in  real-world  autonomous  driving
scenarios.  

(2) Vision perception driven by multi-source data fusion.
　In  the  domain  of  vision  perception,  the  fusion  of  multi-
source data has emerged as a critical technique to address the
limitations  of  single-modality  inputs  and  enhance  the  model
robustness,  especially  in  complex  real-world  scenarios
characterized by long-tail data distributions. Researchers have
proposed  various  strategies  to  exploit  the  complementary
strengths  of  heterogeneous  sensors  and  data  modalities,
thereby improving perceptual accuracy and generalization [70,
82].  Wang et  al. [70] proposed  a  framework  named long-tail
regularization (LoTR) to address the challenges posed by rare
scenarios  in  autonomous  driving  perception  systems.  They
introduce  the  parallel  vision  actualization  system  (PVAS),
which  employs  closed-loop  optimization  and  virtual-real
interaction  to  generate  and  test  large-scale  long-tail  driving
scenarios.  Implemented  within  the  intelligent  vehicle  future
challenge  (IVFC),  PVAS  effectively  mitigates  long-tail
effects,  enhancing  the  robustness  of  autonomous  vision
systems  in  complex  environments.  Zhao  et  al. [82] proposed
fusion  via  vision-language  model  (FILM),  a  novel  image
fusion  framework  that  integrated  textual  semantics  into  the
fusion process.  FILM generates semantic prompts from input
images  using  techniques  like  image  captioning  and  dense
captioning, which are then processed by ChatGPT to produce
detailed  textual  descriptions.  These  descriptions  are  encoded
using a frozen BLIP2 model and fused to guide the extraction
and  fusion  of  visual  features  through  cross-attention
mechanisms.  This  approach  enhances  contextual
understanding  and  achieves  superior  results  across  various
fusion  tasks,  including  infrared-visible,  medical,  multi-
exposure, and multi-focus image fusion.

Reliable  eye-state  recognition,  precise  eye-center
localization, and accurate gaze estimation are fundamental for
applications  such  as  driver-monitoring  systems,  AR/VR
interaction,  and human-computer  interfaces.  Most  prior  work
tackles  these  three  subtasks  in  isolation,  causing  error
accumulation  and  limiting  robustness  when  facing  exhibit

occlusions,  large  head  poses,  or  diverse  eye  appearances.
Motivated by the need for a unified and resilient solution, Zhu
et al. [83] proposed a joint cascaded regression framework for
simultaneous  eye state,  eye  center,  and gaze  estimation.  This
method  iteratively  refines  eye  landmark  positions  and
openness  probabilities  using  shape  and  appearance  features.
By  modeling  the  eye  state  as  a  continuous  openness
probability, the framework enhances robustness to occlusions
and  varying  eye  appearances.  Additionally,  it  employs  a
learning-by-synthesis strategy and combines real and synthetic
data  to  improve  training  efficiency  and  accuracy.  Song et  al.
[84] proposed  a  lightweight  high-definition  mapping  method
based on multi-source data fusion perception for autonomous
driving. This approach constructs local semantic maps (LSMs)
by  integrating  data  from  multiple  onboard  sensors.  These
LSMs  are  then  uploaded  to  a  cloud  server,  where  multiple
maps  of  the  same  road  section  and  collected  through
crowdsourcing  are  fused  to  generate  high-definition  maps.
The  method  employs  an  improved  two-stage  semantic
alignment  algorithm  for  multi-trajectory  pose  optimization,
enhancing  mapping  efficiency  and  accuracy  while  reducing
costs and update latency.

The integration of diverse image modalities has also become
a  focal  point  of  research.  Liu  et  al. [58] proposed  a  multi-
interactive  feature  learning  framework  for  image  fusion  and
segmentation.  This  cascaded  architecture  integrates  a  fusion
sub-network  and  a  segmentation  sub-network,  facilitating
mutual enhancement between tasks. A hierarchical interactive
attention block ensures fine-grained feature mapping, while a
dynamic  weighting  factor  automatically  balances  task
contributions.  Additionally,  they  introduced  the  FMB
benchmark,  a  full-time  multi-modality  dataset  with  15
annotated  categories,  to  support  comprehensive  evaluation.
Building  on  this  foundation,  Luo  et  al. [85] proposed
hierarchical  attention  and  parallel  filter  fusion  network  for
multi-source  data  classification,  particularly  focusing  on
hyperspectral image (HSI) and synthetic aperture radar (SAR)
data.  The  hierarchical  attention  module  integrates  global,
spectral,  and  local  features  to  provide  comprehensive  feature
representations. Additionally, the parallel filter fusion module
enhances cross-modal feature interactions by operating in the
frequency  domain,  facilitating  the  effective  fusion  of  multi-
source  data.  This  approach  addresses  the  challenges  of
exploiting  abundant  features  simultaneously,  leading  to
improved  classification  performance  on  multi-source  remote
sensing datasets.

Another  development  focuses  on  the  challenge  of  image
misalignment.  Li  H  et  al. [79] propose  a  unified  framework
for  unregistered  infrared-visible  image  fusion  that  integrates
cross-modality  alignment  and  fusion  in  a  single  stage.  It
employs  a  shared  shallow  feature  encoder  and  a  learnable
modality  dictionary  to  align  cross-modal  features,  enhancing
consistency  and  reducing  modality  discrepancies.
Additionally, a correlation matrix captures pixel relationships
between  modalities,  facilitating  effective  feature  alignment
and improving fusion quality.  
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V.  Integration Trend between Parallel Images and
Generative Foundation Model

  

A.  Background and Motivation
Recent  advancements  in  generative  artificial  intelligence

and  large-scale  multi-modal  foundation  models  have
significantly  reshaped  the  landscape  of  visual  computing.
Techniques  such  as  diffusion  models [86],  GANs [87],  and
neural  radiance fields [88] have achieved notable  progress  in
image  quality,  semantic  consistency,  and  multi-modal
intelligent  perception  capabilities.  Concurrently,  models  such
as CLIP [9], DALL·E [89], SAM [10], and GPT-4V [11] have
demonstrated  strong  abilities  in  cross-modal  alignment,  task
transfer,  and  general  semantic  modeling,  propelling  visual
systems toward general intelligent perception.

Despite  these  advancements,  foundational  models  face
several  limitations  in  specific  task  scenarios:  (1)  lack  of
physical  controllability  and  realism  in  generated  scenes;  (2)
opacity in training data sources, leading to generalization and
robustness  issues  in  high-security-sensitive  domains;  and  (3)
high  degrees  of  model  opacity,  lacking  rapid  adaptation
mechanisms based on real-world feedback.  

B.  Fusion Pathway
To  address  these  challenges,  integrating  parallel  images

technology with generative AI presents a promising approach.
This integration primarily manifests in the following aspects.

(1)  Generative  models  for  virtual  scene  construction.　
Utilizing  generative  models  to  drive  virtual  scene  content
generation  enhances  image  semantics  and  style  control.  By
incorporating  text-driven  diffusion  models  and  pre-trained
language-vision  models  (e.g.,  CLIP-guided  NeRF [90]),  it
becomes feasible to generate high-fidelity images, videos, and
even  3D  scenes  from  natural  language,  high-level  semantic
maps,  and  behavioral  descriptions.  This  capability
significantly  enriches  the  diversity  and  customizability  of
artificial scenes in parallel images.

(2)  Structured synthetic  data  for  model  fine-tuning and
evaluation.　 Parallel  images  technology  can  produce
structured, multi-modal, and well-annotated synthetic datasets
to  support  fine-tuning  and  evaluation  of  large  models.  Given
that  current  large  models  often  exhibit  instability  in  specific
tasks  (e.g.,  small  object  detection  and  extreme  weather
perception).  Parallel  images  can  synthesize  high-quality
training  data  covering  rare  scenarios  and  multi-modal  sensor
views.  Combined  with  virtual-real  interaction  mechanisms,
this  data  can  be  used  for  targeted  reinforcement  training  and
pre-deployment simulation assessments of large models.

(3)  Real-world  feedback  for  adaptive  learning.　
Establishing  a  feedback  learning  mechanism  based  on  large
models  enables  cross-scene  adaptation  and  evolutionary
optimization.  Through  parallel  execution  mechanisms,
performance data collected from large models deployed in real
environments  can  serve  as  feedback  signals  to  the  virtual
world. This process facilitates scene reconstruction, parameter
fine-tuning,  and  knowledge  inversion  based  on  generative
models,  forming  a  closed  loop  of “generation-simulation-
feedback-optimization”.  Consequently,  visual  systems  can

possess  real-time  evolution  and  autonomous  adaptation
capabilities.  

C.  Future Outlook
The  integration  of  parallel  images  technology  with

generative  AI  and  large-scale  multi-modal  models  not  only
enhances  task  specificity  and  controllability  in  data
generation,  but  also  addresses  semantic  blind  spots  in  model
training.  Moreover,  it  establishes  a  closed-loop  mechanism
supporting continuous learning and feedback optimization. As
multi-modal  models  with  reasoning  capabilities  continue  to
mature,  parallel  images  are  poised  to  transition  from
“perception  assistance” to “knowledge-driven” cognitive
intelligence.  It  becomes  a  critical  supporting  technology  for
constructing general-purpose visual systems.  

VI.  Conclusion

As  a  novel  image  generation  and  modeling  framework
developed from the theory of parallel systems, parallel images
constructs  artificial  scene  environments,  conducts
computational  experiments,  and  enable  parallel  execution
between virtual and real spaces. Through this process, it forms
a  closed-loop  mechanism  of “modeling-training-feedback-
optimization”,  providing high-quality,  diverse,  and structured
synthetic data to support visual perception systems. This paper
systematically  reviews  the  theoretical  foundations  and
developmental path of parallel images, with a particular focus
on  recent  research  progress  and  practical  applications  in  key
areas  such  as  virtual  scene  generation,  virtual-real  domain
adaptation,  and  heterogeneous  knowledge-driven  parallel
execution.  
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